NOAA Technical Memorandum NMFS

MARCH 1983

REPORT OF EASTERN TROPICAL PACIFIC RESEARCH VESSEL MARINE MAMMAL SURVEY, MAY 15 - AUGUST 3, 1982

Rennie S. Holt

[^0]
NOAA Technical Memorandum NMFS

The National Oceanic and Atmospheric Administration (NOAA) was organized in 1970. It has evolved into an agency which establishes national policies and manages and conserves our oceanic coastal, and atmospheric resources. It provides managerial, research, and technical expertise to produce practical services and essential information for the programs concerned with such resources.

The National Marine Fisheries Service (NMFS) provides the United States with an integrated program of management, research, and services concerned about the protection and rational use of living marine resources for their aesthetic, economic, and recreational value. NMFS determines the consequences of the naturally varying environment and human activities on living marine resources. NMFS provides knowledge and services to foster the efficient and judicious use of those resources. NMFS provides for domestic and for international management and conservation of these living resources of the sea.

To carry out its mission, the organization also provides for communication of NMFS information. In addition to its formal publications, NMFS uses the NOAA Technical Memorandum series for informal scientific and technical publications. These documents are specialized reports that require multiple copies when complete formal review and editorial processing are not appropriate or feasible. The management and control of Technical Memorandums has been delegated to the Research Centers, Regional Offices, and corresponding staff offices within NMFS. Therefore, requests for copies of Technical Memorandums should be sent to the author or to the originating office for the material.

REPORT OF EASTERN TROPICAL PACIFIC RESEARCH VESSEL MARINE MAMMAL SURVEY, MAY 15 - AUGUST 3, 1982

Rennie S. Holt
Southwest Fisheries Center National Marine Fisheries Service, NOAA
La Jolla, California 92038

NOAA-TM-NMFS-SWFC-29

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary National Oceanic and Atmospheric Administration John V. Byrne, Administrator National Marine Fisheries Service William G. Gordon, Assistant Administrator for Fisheries

CONTENTS

Page
OBJECTIVES 1
MATERIALS AND METHODS 2
SCIENTIFIC PERSONNEL 2
RESULTS 6
LITERATURE CITED. 7

LIST OF TABLES

Table Page
1 Sea state conditions measured by the Beaufort scale (from Bowditch, 1966) 8
2 Daily searching effort recorded in the eastern tropical Pacific during May 14 through August 2, 1982 9
3 Marine mammal sightings, classified by speciescode groups, encountered in the eastern tropicalPacific during May 14 through August 2, 1982.62
4 Summary of cetacean sightings encountered in the eastern tropical Pacific during May 14 through August 2, 1982. 101
Marine mammal school size estimates for eachobserver, classified by species codes, forall sightings encountered in the easterntropical Pacific during May 14 through August 2,1982104
Figures Page
1 Tracklines surveyed from the R/V D. S. Jordanin the eastern tropical Pacific during May 14through August 2, 1982113
2 Research ship marine mammal daily effortrecord.114
3 Research ship marine mammal sighting record 115
4 Research ship marine mammal sighting recordcontinuation sheet.116
5 Vertical and horizontal sun position categories 117
6 Record of offshore spotted dolphin, Stenellaattenuata (Species Code 2) encountered in theeastern tropical Pacific during May 14 throughAugust 2, 1982118
7 Record of spinner dolphin, Stenella longirostris(Species Code 3) encountered in the easterntropical Pacific during May 14 through August 2,1982119
8 Record of common dolphin, Delphinus delphis(Species Code 5) encountered in the easterntropical Pacific during May 14 through August 2,1982120
Record of coastal spotted dolphin Stenellaattenuata graffmani (Species Code 6) encounteredin the eastern tropical Pacific during May 14through August 2, 1982121
Record of eastern spinner dolphin, Stenellalongirostris (Species Code 10) encounteredin the eastern tropical Pacific during May 14through August 2, 1982122
11 Record of whitebelly spinner dolphin, Stenella longirostris (Species Code 11) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 123
12 Record of striped dolphin, Stenella coeruleoalba (Species Code 13) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 124
Figure Page
13
Record of rough toothed dolphin, Steno bredanensis (Species Code 15) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 125
14
Record of bottlenosed dolphin, Tursiops truncatus(Species Code 18) encountered in the easterntropical Pacific during May 14 through August 2,1982126
15
Record of Risso's dolphin, Grampus griseus(Species Code 21) encountered in the easterntropical Pacific during May 14 through August 2,1982127
16
Record of Pacific white-sided dolphin,Lagenorhynchus obliquidens (Species Code 22)encountered in the eastern tropical Pacific duringMay 14 through August 2, 1982128
17 Record of pygmy killer whale, Feresa attenuata (Species Code 32) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 129
18 Record of false killer whale, Pseudorca crassidens (Species Code 33) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 130
19 Record of pilot whale, Globicephala sp. (Species Code 34) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 131
20 Record of killer whale, Orcinus orca (Species Code 37) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 132
21
Record of sperm whale, Physeter catodon (Species Code 46) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 133
22 Record of pygmy sperm whale, Kogia breviceps (Species Code 47) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 134
Figure

23 Record of dwarf sperm whale, Kogia simus (Species Code 48) encountered in the eastern tropical Pacific during May 14 through August 2, 1982135

Record of beaked whale, Zipdiid (Species Code 49) encountered in the eastern tropical Pacific during May 14 through August 2, 1982136

25 Record of unid. mesoplodont, Mesoplodont sp. (Species Code 51) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.137

26 Record of Cuvier's beaked whale, Ziphius cavirostris (Species Code 61) encountered in the eastern tropical Pacific during May 14 through August 2, 1982138
27 Record of Rorceval, Balaenoptera sp. (Species Code 70) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 13928 Record of Minke whale, Balaenoptera acutorostrata(Species Code 71) encountered in the easterntropical Pacific during May 14 through August 2,1982140
29
Record of Bryde's whale, Balaenoptera edeni
(Species Code 72) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 141
30 Record of fin whale, Balaenoptera physalus (Species Code 74) encountered in the eastern tropical Pacific during May 14 through August 2, 1982. 142
31 Record of blue whale, Balaenoptera musculus
(Species Code 75) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 143
32 Record of humpback whale, Megaptera novaeangliae (Species Code 76) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 144
Figure Page
33
Record of unidentified dolphin (Species Code77) encountered in the eastern tropicalPacific during May 14 through August 2, 1982145
34
Record of unidentified small whale (SpeciesCode 78) encountered in the eastern tropicalPacific during May 14 through August 2, 1982146
35
Record of unidentified large whale (SpeciesCode 79) encountered in the eastern tropicalPacific during May 14 through August 2, 1982147
36
Record of spotted dolphin, Stenella attenuata,(Species Code 90) encountered in the easterntropical Pacific during May 14 through August 2,1982148
37
Record of unidentified cetacean (Species Code96) encountered in the eastern tropical Pacificduring May 14 through August 2, 1982149
38
Record of unidentified object (Species Code 97) encountered in the eastern tropical Pacific during May 14 through August 2, 1982. 150
39
39 Record of unidentified whale (Species Code 98) encountered in the eastern tropical Pacific during May 14 through August 2, 1982 151

REPORT OF EASTERN TROPICAL PACIFIC RESEARCH VESSEL MARINE MAMMAL SURVEY, MAY 15 - August 3, 1982

Rennie S. Holt
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
La Jolla, California 92038

The National Marine Fisheries Service (NMFS) has been given the responsibility to determine the status of the dolphin stocks that are taken incidentally by the Eastern Tropical Pacific (ETP) yellowfin tuna purse seine fishery (Richey 1976^{1}). Estimates of ETP dolphin population abundance, which are needed to complete the assessment, have been made using census survey data collected by observers aboard airplanes, tuna vessels and research vessels (Smith 19752, Holt and Powers 1982). The NMFS conducted a marine mammal survey aboard the National Oceanic and Atmospheric Administration (NOAA) research ship David Starr Jordan during May-August, 1982 to obtain information on density of dolphin stocks in the ETP. This report describes the experimental procedures and the data obtained in the survey.

OBJECTIVES

The primary objective of the survey was to investigate density gradients of dolphin populations in areas of the ETP tuna fishery especially along $10^{\circ} \mathrm{N}$ latitudinal. Other objectives were to
(1) develop and test technology to improve accuracy of sighting angles and distances of marine mammals from a ship,
(2) examine the variability of dolphin school size estimates and species identifications among observers,
(3) examine the efficiency of observer performance during various watch lengths,
(4) investigate stock specific vocalization patterns of cetaceans and the suitability of acoustic technology for making population size

[^1]estimates, and
(5) study school structure, behavior, species differences, trophic interactions, and relation of environmental variables on the distribution of dolphins along the $10^{\circ} \mathrm{N}$ latitudinal line.

MATERIALS AND METHODS
Study Area and Itinerary
The R/V David Starr Jordan traversed predetermined tracklines in the ETP from May 14 through August 3, 1982 with port calls in Manzanillo, Mexico and Honolulu, Hawaii (Figure 1). The itinerary of the ship, included three segments:

Departed	San Diego, CA	May	14,1982
Arrived	Manzanillo, MX	June	4,1982
Departed	Manzanillo, MX	June	7,1982
Arrived	Honolulu, HI	July 7,1982	
		July 11, 1982	
Departed	Honolulu, HI	August 3, 1982	
Arrived	San Diego, CA		

SCIENTIFIC PERSONNEL
Participating scientists in the different segments of the cruise were:

Segments

Rennie Holt, Chief Scientist, NMFS I and II
Steve Reilly, Cruise Leader, NMFS III
Gary Friedrichsen, NMFS I - III
Steve Grieser, NMFS
"
Richard Lindsay, NMFS "
Robert Pitman, NMFS "
Scott Sinclair, NMFS "
Thomas Tumosa, NMFS "
Dimitry Abramenkof, NMFS III
Thomas Polacheck, NMFS II
Robert Hopkins, Louis Adamo, Inc. "
Jeanette Thomas, HSWRI "
Shelton Fisher, HSWRI "
Lisa Ferm, HSWRI "
Valyeri Mineev, U.S.S.R. IIIIII

Nikoli Doroshenko, U.S.S.R.

Equipment

The David Starr Jordan was used to conduct the survey. The vessel, commissioned in 1965, is 52 m long and can maintain an efficient cruise speed of $18.5 \mathrm{~km} / \mathrm{hr}$. Binoculars, used for locating animals, were mounted on the upper deck approximately 10.7 m above the sea.

Several pieces of equipment were utilized to gather data. The geographic position of the vessel was recorded periodically and at the time of a sighting using the ships' Satellite Navigation System (SAT NAV). Marine mammals were detected using port and starboard pedestal mounted $25 x$ Fugi binoculars and a variety of hand-held 10-15X binoculars. Surface temperature and salinity, fluorescence (chlorophyll), and temperature depth profiles were obtained using a thermosalinograph, fluorometer, and expendable bathythermograph (XBTs), respectively.

The bearings of marine mammals from the ship were calculated using the Computer Assisted Sighting Technology (C.A.S.T.) system. The C.A.S.T. system, employing an on-board CAMAC computer, assimilated data from several instruments to determine the sighting angles from which radial and perpendicular distances were calculated. Data received by the CAMAC computer included the ship's course, from the gyroscope, the electronically encoded train angles of the 25 X binoculars and a measurement of the relative motion of the ship from a heave-roll-pitch sensor. Estimates of the bearing and radial distance of a school from the ship also were recorded by the observers using a 360° graduated washer attached to the base of the 25 X binoculars and graduated reticles enclosed in the right eye piece of the binoculars.

Passive acoustic listening devices were towed behind the ship to detect cetacean vocalizations. Thomas et al. (1982 ${ }^{3}$) provides a preliminary description of this equipment.

Four 35 mm Cannon cameras were used to photograph animals. A variety of telephoto lens, including $75-210 \mathrm{~mm}$ zoom, 300 and 400 mm lens, were used. Animals were also recorded on 1.27 cm video tape using a Beta I Sony recorder and a Panasonic camera equipped with telephoto lens.

[^2]
Duty Stations

Three duty stations were used during the survey, with observers rotating through each station.
(1) Left Binoculars - The port-side observer used 25 X binoculars, mounted on the port side of the ship to scan the ocean for marine mammal sighting cues. His major area of responsibility was from the midpoint of the trackline, to abeam the port side of the vessel, and outward to the horizon or to the extent possible with prevailing environmental conditions.
(2) Right binoculars - The starboard observer used $25 X$ binoculars, mounted on the starboard side of the ship to search from the midpoint of the trackline to abeam the right side of the ship and outward to the horizon or to the extent possible with prevailing environmental conditions.
(3) Recorder - The recorder's duties were to transcribe transect effort data (Figure 2) at regular intervals, to make notes of information pertaining to each sighting (Figure 3) and, when possible, to search the trackline adjacent the ship for schools not detected by the observers on the 25 X glasses.

Observer Teams and Rotation

Two teams of three observers each alternately occupied the three duty stations. One team (observers 1, 3 and 6) consisted of observers with experience collecting data on ETP dolphins from tuna purse seine vessels only while members of the other team (observers 2, 4 and 5) had similar experience but aboard research vessels. The length of time a team continuously occupied the duty positions, i.e., watch length, varied with 1, 2- and 3-hour shifts. Watch length shifts were rotated every two days and the teams alternated on duty at the beginning of the day. Each team spent approximately equal time on duty and each team member spent approximately equal time occupying each duty station.

Data Collection Procedures

A typical day's searching activity began at sunrise, approximately 0630 hours local time and ended at sunset, approximately 1830 hours local time. The searching procedure was initiated when the duty stations were occupied and a transect record (Figure 2) maintained. The ship traversed a predetermined trackline at a constant speed of approximately $18.5 \mathrm{~km} / \mathrm{hr}$. The ship maintained its speed and course between sunset and sunrise to provide wider spatial distribution of searching effort. Members of a team rotated among the duty stations and teams rotated on and off duty without interrupting searching effort.

When an observer detected a sighting cue (dolphins, birds, etc.) he began tracking the cue by initiating a switch on the binoculars. With the ship still on course and with the cue in the binocular's field of view the C.A.S.T. system recorded, on magnetic tape, successive bearings of the cue to the ship. When the target was not in the field of view the switch was deactivated untill the target was again sighted. After a maximum of five minutes or until the target could not be observed, the tracking procedure was terminated. If marine mammals were observed and if desired, the vessel deviated from the trackline and approached the animals. The searching mode was resumed when the vessel returned to course and speed and the observers resumed searching for other sighting cues.

During the course of each marine mammal sighting the recorder initiated procedures to ensure collection of data necessary to complete Research Vessel Effort and Sighting Forms (Figures 2 and 3). Definition of each data element is given by Ralston (19834). Criteria for assigning sun position and sea state conditions are given in Figure 5 and Table 1, respectively. Observers recorded bearing and range for schools from the Jordan using the 360° washer and reticle increments. The reticle measurements were converted to km using

$$
a=0.01066 \tan (\arctan (1174.931)-0.0823 r)
$$

where a equals radial distance in $k m$ and r denotes the number of reticles below the topmost reticle (Smith, 1982).

Each observer, who had a sufficient view of the school, independently recorded animal behavior information, an estimate of school size, and a determination of species identification and composition on the Continuation Form (Figure 4). This resulted in one up to six species identifications and estimates of percent composition for each school sighted. For example, one observer may have indicated a school was 100% unidentified spotted dolphins (species code 2) while a second observer may have identified the school as 100% offshore spotted dolphins (species code 90). The school would be listed in the data summary tables as 50% unidentified spotted and 50% offshore spotted dolphins. Species identifications were validated when possible by photographing the school at close range using 35 mm cameras or video tape.

At the end of each day, the Chief Scientist transcribed each observer's independently derived estimates of school size, species identification and school composition onto the sighting forms. The observers were instructed not to confer with each other concerning these data during or after the sighting.

[^3]Data to study the relationship between environmental features and marine mammal distributions were collected. A thermosalinograph continuously recorded surface water temperature and salinity. It was annotated with the current geographic position at 0600, 1200, 1800 and 2400 hours local time. XBT data were collected at the same time. Flourimeter readings were recorded daily every 3 hours beginning 0600 hours until 2400 hours.

Data to investigate detection of cetaceans using a towed array of hydrophones were collected between June 11 and July 8, 1982. Procedures used to operate the towed array are described by Thomas et al. (1982 ${ }^{3}$). The data, collected in cooperation with scientists of Hubbs Sea World Research Institute, compared abilities of the array and the observers to detect cetaceans under different sighting conditions.

The precision and variability of the C.A.S.T. system were investigated between July 3 and 7, 1983. Data collected to compare the C.A.S.T. system with estimates recorded from the washers and reticles affixed to the binoculars, with observer's direct visual estimates and with the ship's radar. The ship's rescue boat, equipped with a radar reflector, and a radar reflective buoy were used as sighting targets. The direction of travel of the boat was varied to simulate movement of a cetacean. The ship alternated approaching each target while observers recorded data from each method.

RESULTS

During 89 sea days, $11,184 \mathrm{~km}$ were searched and 342 marine mammal sightings were recorded. Dolphins occurred in 216 sightings. Data collected on each series of effort for each day are presented in Table 2. Data recorded for each marine mammal sighting classified by species code groups are given in Table 3. Geographic positions of all sightings classified by species codes are shown in Figures 6-39. Included in the 342 sightings were 103 schools with two or more species (mixed schools) or schools which were identified to different code groups. They are presented in each species code list and are represented more than once in Figures $6-39$ and in Tables 3 and 4 (i.e., total schools in Table 4 equal 515). The individual observer estimates of school size are presented, classified by species code groups, in Table 5.

The cruise successfully collected data to address each of the research objectives. Detailed analysis of the data are under way. Preliminary results of analysis of the acoustic data are reported by Thomas et al. (19835).

[^4]
LITERATURE CITED

Bowditch, N. 1966. American practical navigator. U.S. Govt. Print. Off., Washington, D.C., 1524 pp.

Holt, R. S. and J. E. Powers. 1982. Abundance estimation of dolphin stocks involved in the eastern tropical Pacific yellowfin tuna fishery determined from aerial and ship surveys to 1979. NOAA-TM-NMFS-SWFC-23, 95 pp.

Smith, T. D. 1982. Testing methods of estimating range and bearing to cetaceans aboard the R/V D. S. Jordan. NOAA-TM-NMFS-SWFC-20, 20 pp.

Table 1. Sea state conditions measured by the Beaufort scale (from Bowditch, 1966).

Wind force (Beaufort)	Knots	Descriptive	Pr wa Sea Conditions he in	Probable wave height in ft.
0	0-1	Calm	Sea smooth and mirror-like	-
1	1-3	Light air	Scale-like ripples without foam crests	1/4
2	4-6	Light breeze	Small short wavelets; crests have a glassy appearance and do not break	1/2
3	7-10	Gentle breeze	Large wavelets; some crests begin to break; foam of glassy appearance. Occasional white foam crests	2
4	11-16	Moderate breeze	Small waves, becoming longer; fairly frequent white foam crests	4
5	17-21	Fresh breeze	Moderate waves, taking a more pronounced long form; many white foam crests; there may be some spray	6
6	22-27	Strong breeze	Large waves begin to form; white foam crests are more extensive everywhere; there may be some spray	10

 NッホNロー

7	33	\%	3	3
m	표	$\stackrel{\square}{8}$	A	S
$\underline{19}$	$\because=$	$\stackrel{\square}{2}$	\pm	F
z	z	z	z	z
-	은	m	-	9
N	-	N	N	-

SERIES	LEG	date	$\begin{aligned} & \text { SPEED } \\ & \text { KM/HR } \end{aligned}$	_OBSERUER CODES LEFT RIGHT REC.			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. } \\ & \hline \end{aligned}$		beauf. NO.	COURSE (DEG.)						$\stackrel{K H}{\text { IN }}{ }^{\text {LEG }}$
01	28	820516	19.45	02	03	06	04	01	3	140						6.48
01	29	820516	19.45	04	05	01	05	02	3	140						4.86
01	30	820516	19.45	04	05	01	05	02	3	140		23	N		52	1.62
01	31	820516	19.45	01	05	04	05	02	3	140						3.24
01	32	820516	19.45	01	04	05	05	02	3	140						9.72
01	33	820516	20.37	06	02	03	05	02	2	140		15	N	112	47	11.20
01	34	820516	20.37	03	02	06	05	02	2	140						6.45
01	35	820516	20.37	03	06	02	05	02	2	140						2.72
01	36	820516	20.37	04	05	01	05	03	2	140						7.47
01	37	820516	20.37	04	05	01	05	03	2	140	21	04	N		38	0.34
01	01	820517	18.52	03	06	02	10	03	3	140	19	30	N		25	8.03
01	02	820517	18.52	03	02	06	10	03	3	140						8.33
01	03	820517	18.52	06	02	03	10	02	3	140						10.19
01	04	820517	18.52	01	04	05	10	02	3	140						9.26
01	05	820517	18.52	05	04	01	10	02	3	140						4.63
01	06	820517	18.52	05	01	04	10	02	3	140						5.25
01	07	820517	18.52	02	03	06	10	01	3	140						5.86
01	08	820517	18.52	06	03	02	10	01	3	140	19	09	N		06	6.17
01	09	820517	18.52	06	02	03	11	01	3	140						1.85
01	10	820517	18.52	06	02	03	11	01	3	145						4.01
01	11	820517	18.52	04	05	01	10	01	3	145						4.63
01	12	820517	18.52	05	01	04	10	01	3	145						6.17
01	13	820517	18.52	01	04	05	11	01	3	145						7.72
01	14	820517	18.52	03	02	06	12	12	2	145						6.17
01	15	820517	18.52	03	06	02	12	12	2	145						7.72
01	16	820517	18.52	02	06	03	12	12	2	145	18	49	N	110	53	5.25
01	17	820517	18.52	04	01	05	12	12	2	133						8.64
01	18	820517	18.52	05	04	01	12	12	2	133						4.63
01	19	820517	18.52	01	05	04	12	12	2	133						4.63
01	20	820517	18.52	02	03	06	12	12	1	133						6.17
01	21	820517	18.52	02	03	06	01	12	1	233	18	39	N	110	44	0.31
02	01	820517	18.52	06	03	02	01	12	1	133	18	35	N	110	45	3.09
02	02	820517	18.52	05	04	01	02	12	1	133						7.10
02	03	820517	18.52	01	04	05	02	01	2	133						1.23
02	04	820517	18.52	01	04	05	03	01	2	138						0.62
03	01	820517	18.52	01	04	05	03	01	2	133	18	30	N	110	40	8.03

KM
IN LEG

 ここう

SERIES	LEG	date	$\begin{aligned} & \text { SPEED } \\ & K M / H R \end{aligned}$	LEBSERYER CODES			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. } \\ & \text { UERT. } \end{aligned}$		beauf. NO.	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$	LATIT			Itude	$I^{K M}{ }^{\text {LEG }}$
05	09	820518	18.52	05	04	01	05	02	3	131					6.79
05	10	820518	18.52	06	03	02	05	02	3	131	1523	N	107	24	2.47
05	11	820518	18.52	06	03	02	05	02	2	131	1522	N	107	22	5.56
05	12	820518	18.52	02	03	06	05	02	2	131					5.25
05	13	820518	18.52	02	06	03	05	02	2	131					3.09
05	14	820518	18.52	04	01	05	05	02	3	131					10.19
05	15	820518	18.52	04	05	01	05	03	3	131					3.09
05	16	820518	18.52	04	05	01	05	03	3	131	1512	N	107	10	0.31
01	01	820519	18.52	03	06	02			3	131	1348	N	105	38	5.86
01	02	820519	18.52	03	02	06			3	131					7.41
01	03	820519	18.52	06	02	03			2	131					6.48
01	04	820519	18.52	06	03	02			2	131					7.72
01	05	820519	18.52	04	01	05			2	131					12.35
02	01	820519	18.52	01	05	04			2	131					12.04
02	02	820519	18.52	05	04	01			1	131	1326	N	105	15	6.48
03	01	820519	18.52	02	03	06			1	131	1323	N	105	12	10.49
03	02	820519	18.52	06	03	02			1	131					1.54
04	01	820519	18.52	06	03	02			1	131	1317	N	105	05	2.47
05	01	820519	18.52	06	03	02			1	131	1312	N	105	00 W	2.78
05	02	820519	18.52	04	01	05			1	131					12.96
05	03	820519	18.52	01	04	05			1	131					2.16
06	01	820519	18.52	01	04	05			2	131	1303	N	104	49	2.16
06	02	820519	18.52	06	02	03			2	131					8.95
06	03	820519	18.52	06	03	02	04	01	2	131					8.03
06	04	820519	18.52	02	03	06	04	01	2	131					8.64
06	05	820519	18.52	02	06	03	04	01	2	131					5.25
06	06	820519	18.52	03	06	02	04	01	2	131					6.17
06	07	820519	18.52	04	05	01	04	02	2	131					9.26
06	08	820519	18.71	05	01	04	05	02	2	131					5.30
06	09	820519	18.52	02	03	06	05	02	3	131					5.56
06	10	820519	18.52	04	01	05			4	131					2.78
06	11	820519	18.52	04	01	05			4	131	1735	,	104	26	11.11
06	12	820519	18.52	04	01	05			4	131	1235	N	104	21	0.31
01	01	820521	18.52	05	01	04	12	02	5	060	0821	1	100	17	9.26
01	02	820521	18.52	04	05	01	12	02	5	060					9.26
01	03	820521	18.52	01	04	05	12	02	5	060					9.57

3	3	$=$	3	3	33	3	$=3$	3
in	\sim	$\stackrel{-}{-}$	a	8	- ${ }^{\circ}$	戸	กล	$\stackrel{0}{\circ}$
-	$\stackrel{\sim}{8}$	웅	-	-	:o	$\stackrel{\circ}{\circ}$	웅ㅇㅇㅇ	ロ0
z	z	z	z	z	z x	z	$z z$	z
m	\pm	is	4	\cdots	끙	옹	~5	N
\%	-	\%	-	0	응응		응	응

SERIES	LEG	date	SPEED KM/HR	OBSERVER CODES LEFT RIGHT REC.			SUN POSITIONZ		BEAUF NO.	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$			UE		TuT)	$\text { IN }^{\text {Kin }} \mathrm{LEG}$
05	02	820522	18.52	04	01	05			4	074						8.03
05	03	820522	18.52	05	01	04			4	074						6.17
06	01	820522	18.52	05	04	01			4	074	10	38	N	095	56	7.72
06	02	820522	18.52	06	03	02			3	074						8.64
06	03	820522	18.52	02	03	06			3	074						8.33
06	04	820522	18.52	02	06	03			3	074						2.47
07	01	820522	18.52	02	06	03			3	074						4.01
07	02	820522	18.52	03	06	02			3	074						8.33
07	03	820522	18.52	03	02	06			3	074						5.56
07	04	820522	18.52	03	02	06			3	074	10	46	N	095	31	0.31
08	01	820522	18.52	06	02	03			3	074	10	44	N	095	29	3.09
09	01	820522	18.52	01	04	05			3	074						12.96
09	02	820522	18.52	05	01	04			3	074	10	50	N	095	20	9.26
09	03	820522	18.52	04	05	01			3	074						7.41
09	04	820522	18.52	06	03	02			3	074						6.17
10	01	820522	18.52	04	01	05			3	074	10	44	N	095	07	8.33
10	02	820522	18.52	04	01	05			3	074	10	45	N		02	0.93
01	01	820523	18.52	05	04	01	09	03	4	152	08	50	N		58	6.17
01	02	820523	18.52	01	04	05	09	03	4	152						5.25
01	03	820523	18.52	01	05	04	09	03	4	152						9.26
01	04	820523	18.52	06	03	02	09	02	4	152						6.17
01	05	820523	18.52	02	03	06	09	02	4	152						7.10
01	06	820523	18.52	02	06	03	09	02	4	152	08	32	N	093	49	5.86
01	07	820523	18.52	03	06	02	09	02	4	152						4.94
01	08	820523	18.52	01	05	04	09	02	4	152						2.16
02	01	820523	18.52	05	04	01	10	01	4	130		21	N		46	6.79
02	02	820523	18.52	06	02	03	10	01	4	152	08	19	N	093	45	6.17
02	03	820523	18.52	06	03	02	10	12	4	152						7.10
02	04	820523	18.52	02	03	06	10	12	4	152						5.56
02	05	820523	18.52	04	05	01	10	12	4	152						5.86
02	06	820523	18.52	01	04	05	12	12	3	152						6.79
02	07	820523	18.52	05	01	04	12	12	3	152						8.03
02	08	820523	18.52	03	02	06	12	12	3	152						1.23
02	09	820523	18.52	03	02	06	12	12	3	172						1.54
02	10	820523	18.52	03	02	06	12	12	3	152						5.25
02	11	820523	18.52	06	02	03	12	12	3	152						9.57

SERIES	Leg	DATE	SPEED KM/HR	GEFT RIGERYER CODES			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. } \\ & \text { VERT } \end{aligned}$		beauf. NO.	Course (DEG.)					テ̄̄̄	$\text { IN }{ }^{\text {KM }} \mathrm{LEG}$
02	12	820523	18.52	01	04	05	12	12	3	152						5.56
02	13	820523	18.52	05	01	04	12	12	3	152						5.56
03	01	820523	18.52	06	03	02	12	12	3	152	07	50	N		26	7.10
03	02	820523	18.52	02	03	06	12	12	3	152						5.86
03	03	820523	18.52	02	04	06	12	12	3	152						2.47
03	04	820523	18.52	05	04	01	12	12	3	152						4.32
03	05	820523	18.52	01	05	04	04	01	3	152						6.17
03	06	820523	18.52	04	01	05	04	01	3	152						5.25
04	01	820523	18.52	06	02	03	04	01	3	152	07	32	N	093	16	5.86
04	02	820523	18.52	04	01	05	04	02	3	152						6.17
04	03	820523	18.52	01	05	04	04	02	3	152						6.17
04	04	820523	18.52	05	04	01	04	02	3	152						6.79
04	05	820523	18.52	02	03	06	04	03	3	152						7.72
04	06	820523	18.52	02	06	03	04	03	3	152						3.09
04	07	820523	18.52	02	06	03	04	03	3	152	07	15	N		06	0.31
01	01	820524	18.52	02	06	03			4	106	06	39	N		14 h	5.56
01	02	820524	18.52	03	06	02			4	106						6.48
01	03	820524	18.52	03	02	06			4	106						6.17
01	04	820524	18.52	06	02	03			4	106						5.86
01	05	820524	18.52	04	01	05			5	106						7.72
01	06	820524	18.52	01	05	04			5	106						7.72
01	07	820524	18.52	05	04	01			4	106						3.40
01	08	820524	18.52	02	03	06			4	106	06	32	N	090	49 W	6.48
01	09	820524	18.52	06	03	02			4	106						6.17
01	10	820524	18.52	06	02	03			4	106						5.56
01	11	820524	18.52	04	01	05			5	106						6.17
02	01	820524	18.52	04	01	05			5	106	06	28	N	090	32 W	0.62
02	02	820524	18.52	01	05	04			4	106						7.10
02	03	820524	18.52	06	02	03			4	106	06	27	N		28	6.79
02	04	820524	18.52	03	02	06			4	106						7.72
02	05	820524	18.52	03	06	02			4	106						4.32
02	06	820524	18.52	01	04	05			4	106						7.10
02	07	820524	18.52	04	05	01			4	106						10.19
02	08	820524	18.52	03	06	02			3	106		22	N	090	07 W	7.72
02	09	820524	18.52	02	06	03			3	106						4.63
02	10	820524	18.52	02	03	06			3	106						6.17

으으으으으으응으으으응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ8ㅇㅇㅇㅇㅇㅇㅇ

MN NNOこここ～
NN NNONNNNO

IH LE 6

$3=3$	$3=$	3	$=3$	$3=3$	3
－	的思	$\stackrel{\sim}{-}$	罭		\cdots
	$\begin{aligned} & \infty \\ & \mathbf{Q}_{8}^{\infty} \\ & 0 \\ & \hline 0 \end{aligned}$	－	$\begin{aligned} & \text { on o } \\ & \text { on } \\ & \hline 0 \end{aligned}$	造品品	앙
$z \geq z$	$\geq x$	z	≥ 2	\boldsymbol{z}	z
\％ 480	へ̊	－		M以	\cdots
\％\％¢	응잉	合	응o	合合	－

 $\infty \infty \infty$

IN LEG

$\begin{aligned} & 3=3 \\ & \text { mom } \end{aligned}$
－¢
$z \boldsymbol{z}$
응m
ヘッロ

3
0
0
0
0
z
2
m
m

 $\bar{\circ} \quad \simeq \simeq \simeq \quad$－

$$
\cong \quad \cong \cong 5 \quad \simeq
$$

3	3	$=$	$=$	$=$	3	33	3	3
-	0	8	3	\sim	-	只 10	8	\div
$\begin{aligned} & n \\ & \mathbf{O} \\ & 0 \end{aligned}$	20	-	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { 응 } \end{aligned}$	-	$\begin{aligned} & \infty \\ & \text { 잉 } \\ & 0 \end{aligned}$	-	-
z	z	\geq	z	z	z	x	z	z
¢	m	m	$\stackrel{\sim}{\sim}$	0	$\stackrel{\sim}{\sim}$	\cdots	\cdots	∞
\cdots	\cdots	\cdots	\because	\cdots	\cdots	$\because \sim$	\cdots	$\stackrel{\square}{\square}$

 -

3	3	\pm	3	33	$=3$	3	3	33
\％	8	\square	$\stackrel{\sim}{\sim}$	品	No	8	\％	の～～
－	응	8	8	응	응	응	－	这逞
z	z	z z	z	$z=$	$z \boldsymbol{z}$	z	z	$z=$
n	$\stackrel{\square}{\sim}$	～N	$\stackrel{\circ}{0}$	No	ㅇN	－	\％	m
\geq	m	～ロ	M	凹サ	$\pm \pm$	\pm	\pm	$\pm \pm$

＝	3	33	33733	3	333
F	12	万40	セロN゚N	N	mor ${ }_{6}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	a			－	
$=$	\geq	$\geq z$	z $x=x \geq$	z	$\geq z \geq$
$\bar{\sigma}$	¢	N：	웅으N NㅜN	\cdots	－ 8
\sim	\cdots	$\because \sim$		\because	in

$\overline{0} 0$
$\infty 0 \infty$
MMMNONO

NNN
$\underset{\circ}{\infty}$
すす 5085

SERIES	LEg	date	SPEED KM/HR	LEBSERUER CODES			$\frac{S U N}{H O R Z}$		bEAUF NO.	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$	Latit				$\stackrel{\text { KM }}{\text { IN }} \text { LEG }$
02	06	820608	18.52	02	03	06	08	01	2	188					6.48
02	07	820608	18.52	06	03	02	08	01	2	188					5.86
02	08	820608	18.52	06	02	03	08	01	2	188					5.25
02	09	820608	18.52	06	02	03	08	01	2	185					1.23
02	10	820608	18.52	05	04	01	08	01	2	185					5.56
02	11	820608	18.52	01	05	04	08	01	2	185					7.72
02	12	820608	18.52	03	02	06	12	12	2	185					5.25
02	13	820608	18.52	04	05	01	12	12	2	185					4.01
02	14	820608	18.52	04	05	01	12	12	2	182					1.85
02	15	820608	18.52	01	04	05	12	12	2	182					5.86
02	16	820608	18.52	05	01	04	12	12	2	182					8.33
02	17	820608	18.52	03	06	02	12	12	2	182	1619	N	104	51	4.94
02	18	820608	18.52	02	06	03	12	12	2	182					5.56
02	19	820608	18.52	02	03	06	12	12	2	182					5.86
02	20	820608	18.52	06	03	02	12	12	2	182					6.79
02	21	820608	18.52	06	02	03	01	01	2	182	1611	N	104		1.85
03	01	820608	18.52	06	02	03	01	01	2	182					1.23
03	02	820608	18.52	03	02	06	01	01	2	182					5.86
03	03	820608	18.52	05	04	01	01	01	2	182					6.17
03	04	820608	18.52	01	05	04	04	01	2	182	1555	N	104	45 W	9.26
04	01	820608	18.52	04	01	05	04	01	2	182	1550	N	104	54 W	2.78
04	02	820608	18.52	05	04	01	04	01	2	182					5.56
04	03	820608	18.52	01	05	04	04	01	2	182					6.79
04	04	820608	18.52	04	01	05	04	01	2	182					7.10
04	05	820608	18.52	03	02	06	03	01	2	182	1538	N	104	55	6.17
04	06	820608	18.52	06	02	03	03	01	2	182					5.56
04	07	820608	18.52	06	03	02	03	02	2	182					5.86
04	08	820608	18.52	02	03	06	03	02	2	182					8.64
04	09	820608	18.52	02	06	03	03	02	2	182	1522	N	104	57 W	4.94
04	10	820608	18.52	03	06	02	03	02	2	182					4.94
04	11	820608	18.52	04	01	05	03	03	2	182					6.79
04	12	820608	18.52	05	04	01	03	03	2	182					3.09
04	13	820608	18.52	05	04	01	03	03	2	182	1510	N	104	58	0.31
01	01	820609	19.45	02	03	06			2	180	1305	N	104	56	5.19
01	02	820609	19.45	06	03	02	08	03	2	180					6.48
01	03	820609	19.45	06	02	03	08	03	2	180					6.48

$3 \quad 3$	33	\％	3	$3 \times$
® ¢	合	$\overline{0}$	앙	－8
$\stackrel{\sim}{\square}$	\％	$\stackrel{\sim}{2}$	$\stackrel{10}{\sim}$	80
$\geq \mathrm{z}$	$z \boldsymbol{z}$	z	z	$z \mathbf{z}$
	N゙边	8	앙	앙
뭉	\％	\％	－	ㅇ：

 응응응응응응응응응응응응ㅇㅇㅇ응응응응응응응응둥둥둥ㄷㅇ웅

3	3	33	3	\％	3	$3=$	3	33	3	3
d	\％	的的	\sim	$\stackrel{\sim}{\circ}$	m	－¢	¢	50	$\underline{2}$	－
\％	5	\％	\bigcirc	앙	\bigcirc	은은	－		응	$\stackrel{\circ}{\circ}$
z	z	z 2	\％	z	z	$z z$	z	$z \mathbf{z}$	z	z
¢		枵的	\pm	$\stackrel{8}{8}$	N	인	\pm	ず	N	－
\bigcirc		응	ล	$\hat{0}$	n	人®	－		－	응

 ＋MmbtatatatatatatatammNNMMNMmmmNNNN

 SPEED
KH／HR

33	3	33	3	$33=$	3	3	$=$	3
8 O	${ }_{\sim}^{2}$	M	N	$\cdots{ }_{*}+$	0	m	＋	\％
$\stackrel{\circ}{0}$	－	ag	앙	$\stackrel{\circ}{ㅇ} \underset{\circ}{\circ}=$	－	E	F－	－
$\geq \geq$	z	$x \geq$	z	$z x$	z	\underline{z}	z	z
人a	¢	W0	\bigcirc		$\hat{0}$	N	－	$\stackrel{\square}{8}$
으응	응		F	二ニ～	\cdots	\cdots	\cdots	\＃

EAUF：COURSE
NO．（DEG．）

SERIES	LEG	date	$\begin{aligned} & \text { SPEED } \\ & \text { KM/HR } \end{aligned}$	GEBTERYER CODES					beauf. NO.	COURSE (DEG.)		$\bar{i} \bar{I} \overline{\mathrm{~F}}$			ITUDE	$\stackrel{\text { KM }}{\text { IN }}$
05	01	820615	18.52	02	03	06	12	12	3	280	13	57	N	111	49	6.17
05	02	820615	18.52	06	03	02	12	01	2	280						2.16
05	03	820615	18.52	06	03	02	02	01	2	194	13	58	N	111	55	3.40
05	04	820615	18.52	06	02	03	02	01	2	194						3.70
05	05	820615	18.52	04	05	01	02	01	2	194						9.88
05	06	820615	18.52	01	04	05	02	01	2	194						4.01
05	07	820615	18.52	02	03	06	02	01	2	194						4.63
05	08	820615	18.52	05	01	04	03	02	2	194						9.26
05	09	820615	18.52	04	05	01	03	02	2	194						8.64
05	10	820615	18.52	01	04	05	03	02	2	194						11.73
05	11	820615	18.52	05	01	04	03	03	2	194						2.78
05	12	820615	18.52	05	01	04			2	194	13	27	N	112	06	0.31
01	01	820616	18.52	04	05				3	190	11	30	N	112	40	9.26
01	02	820616	18.52	05	04	01	08	03	3	190						9.26
01	03	820616	18.52	03	02	06	08	02	3	190						6.17
01	04	820616	18.52	04	01	05			3	190						8.03
02	01	820616	18.52	01	05	04			3	190	11	11	N	112	42	10.49
02	02	820616	18.52	05	04	01			3	190						3.70
03	01	820616	18.52	06	02	03			3	190	10	58	N		45	4.63
04	01	820616	18.52	02	06	03			3	190	10	51	N	112	55	5.25
04	02	820616	18.52	03	06	02			3	190						1.85
04	03	820616	18.52	04	01	05			3	190						4.94
04	04	820616	18.52	03	06	02	12	12	3	190						5.56
04	05	820616	18.52	03	02	06	12	12	3	190						7.10
04	06	820616	18.52	06	02	03	12	12	3	190						5.25
04	07	820616	18.52	01	04	05	12	12	4	190						9.26
04	08	820616	18.52	05	01	04	12	12	4	190						9.57
04	09	820616	18.52	04	05	01			4	190						0.31
05	01	820616	18.52	01	04	05	03	01	4	190	10	23	N	112	57	10.19
05	02	820616	18.52	05	01	04	03	01	4	190						9.26
05	03	820616	18.52	04	05	01	03	01	4	190						5.25
05	04	820616	18.52	04	05	01	02	01	4	196						4.94
05	05	820616	18.52	06	02	03	02	01	4	196						5.56
05	06	820616	18.52	06	03	02	02	01	4	196	10	04	N	113	01	7.10
06	01	820616	18.52	02	03	06	02	02	4	196	09	56	N	113	02	6.17
06	02	820616	18.52	02	06	03	03	02	4	196						6.17

范岂					
岕	$=3$	＝	3	＝$=3$	33
雨	\cdots	－	$\stackrel{5}{5}$	¢以	8 80
＜	Mm	\cdots	m	MMM	\pm \％
면ㅈㅇ	二	\cdots	ㄷ	二F	二
\cdots	－－	－			
可年	z	z	z	$\boldsymbol{z r}$	z
－15	9	\cdots	\pm	¢0\％	Nへ
汇	\％$\%$	\sim	\pm	mNF	－m
1	잉	\bigcirc	\bigcirc		－

NOM
$\therefore 8$
80
$\infty 8$
MM M
∞_{∞}^{∞}

NOースN
$\because \because \bar{O}$

OMMMO
MOM M

SERIES	LEg	date	SPEED KM/HR	GEBSERVER CODES			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. } \\ & \text { NERT. } \\ & \hline \end{aligned}$		beAUF . NO.	COURSE (DEG.)				IION		${ }_{\text {IN }}{ }^{\text {KH }} \mathrm{LEG}$
01	03	820618	18.52	02	06	03			4	315						19.75
02	01	820618	18.52	05	01	04			4	315	07	53	N	115	22	6.17
02	02	820618	18.52	01	04	05			4	315						6.17
02	03	820618	18.52	04	05	01			4	315						4.63
02	04	820618	18.52	02	03	06			4	315	07	59	N	115	28	6.17
02	05	820618	18.52	06	03	02			4	315						6.17
02	06	820618	18.52	06	02	03			4	315						6.17
02	07	820618	18.52	05	04	01			4	315						4.01
03	01	820618	18.52	06	03	02			3	315	08	28	N	115	57	3.09
04	01	820618	18.52	04	01	05			3	315	08	37	N	116	07	12.35
05	01	820618	18.52	03	06	02			3	315	08	46	N	116	15	10.49
05	02	820618	18.52	05	01	04			2	315						7.41
06	01	820618	18.52	01	04	05			2	315	08	50	N	116	22	5.56
06	02	820618	18.52	02	06	03				315						6.48
06	03	820618	18.52	02	03	06			3	315						5.86
06	04	820618	18.52	06	03	02			3	315	08	59	N	116	28	6.48
01	01	820619	18.52	02	03	06	03	03	2	319	10	40	N	117	44	6.17
01	02	820619	18.52	06	03	02	03	03	2	319						7.72
01	03	820619	18.52	04	05	01	03	03	2	319						4.94
01	04	820619	18.52	06	02	03	03	02	2	319						5.86
01	05	820619	18.52	03	02	06	03	02	2	319	10	54	N	117	53	2.16
02	01	820619	18.52	03	06	02	03	02	2	319	10	57	N	117	54	2.78
03	01	820619	18.52	04	01	05	03	01	2	319	11	03	N	117	57	6.48
04	01	820619	18.52	04	01	05	02	01		000	11	09	N	118	07	1.54
04	02	820619	18.52	02	03	06	02	01	2	000	11	10	N	118	06	6.17
04	03	820619	18.52	02	06	03	02	01	2	000						3.09
05	01	820619	18.52	06	02	03	12	12	2	000	11	20	N	118	14	6.79
05	02	820619	18.52	01	04	05	12	12	2	000						8.33
05	03	820619	18.52	04	05	01	12	12	2	000						3.40
06	01	820619	18.52	04	05	01	12	12	2	326	11	31	N	118	14	2.78
06	02	820619	18.52	05	01	04	12	12	2	326						5.25
07	01	820619	18.52	06	02	03			3	323	11	37	N	118	16	9.26
07	02	820619	18.52	04	01	05			3	323						9.26
07	03	820619	18.52	05	04	01			3	323						7.72
07	04	820619	18.52	01	05	04			3	323						4.63
07	05	820619	18.52	01	05	04	11	03	3	323	11	51	N	118	28	0.31

33	3	3	33	33	$=3$	3
－\％	$\stackrel{\text { r }}{ }$	品	$\bigcirc \bigcirc$	웅	N－	\％
을	믕	－	으ㄴㅜㅣ	앙	윾요	은
z x	z	z	z 2	z \mathbf{z}	≥ 2	z
옹	\pm	－	옹	－8	응	N
$\because \mathrm{m}$	\cdots	\pm	Mm	Mm	mロ	N

 றற

33	=	$=$
品	in	\bigcirc
-	ㄲ	-
z z	z	z
\% ${ }^{3}$	\cdots	m
$=\cong$	~	N

놈

SERIES	LEG	DATE	$\begin{aligned} & \text { SPEED } \\ & \text { KM/HR } \end{aligned}$	$\begin{aligned} & \text { QOBSERUER_CDES } \\ & \text { LEFT } \\ & \text { RIGHT } \\ & \text { REC } \end{aligned}$			$\begin{aligned} & \underline{S U N} \operatorname{POSITION} \\ & \text { HORZ. } \\ & \text { UERT. } \end{aligned}$		beauf. NO.	COURSE (DEG.)		$\therefore \because P O$		LION		$\stackrel{\text { KM }}{\text { IN }} \mathrm{LEG}$
02	14	820625	18.52	03	06	02	12	12	4	212						6.17
02	15	820625	18.52	03	02	06	12	12	4	212	13	08 N	N	130	35 W	5.56
02	16	820625	18.52	06	02	03	12	12	4	212						6.79
02	17	820625	18.52	01	04	05	12	12	4	212						6.17
02	18	820625	18.52	05	01	04	12	12	4	212						6.17
02	19	820625	18.52	04	05	01			4	212						12.35
02	20	820625	18.52	05	01	04			4	212						6.17
02	21	820625	18.52	04	05	01			4	212						6.17
02	22	820625	18.52	03	06	02			3	212						6.17
02	23	820625	18.52	02	06	03			3	212						6.17
02	24	820625	18.52	02	03	06			3	212	12	39 N	N	130	59 W	2.16
02	25	820625	18.52	02	03	06			3	206						4.01
02	26	820625	18.52	06	03	02			3	206						6.17
02	27	820625	18.52	06	02	03			3	206						6.17
02	28	820625	18.52	03	02	06			3	206						6.17
02	29	820625	18.52	01	04	05			3	206						6.79
02	30	820625	18.52	04	05	01			3	206						5.56
02	31	820625	18.52	05	01	04			4	206						6.17
02	32	820625	18.52	01	04	05			4	206						4.01
01	01	820626	18.52	01	04	05			4	206	10	13 N	N	132	26	6.17
01	02	820626	18.52	04	05	01	08	03	4	206						7.72
01	03	820626	18.52	02	06	03	08	03	4	206						6.17
01	04	820626	18.52	01	05	04	08	03	4	206						5.25
01	05	820626	18.52	05	04	01	08	02	,	206						5.56
01	06	820626	18.52	04	01	05	08	02	4	206						6.48
01	07	820626	18.52	03	06	02	08	02	4	206	09	52	N	132	38 W	6.79
01	08	820626	18.52	02	06	03	08	02	4	206						5.25
01	09	820626	18.52	02	03	06	08	02	4	206	09	43 N	N	132	43 W	6.48
02	01	820626	18.52	06	03	02	08	01	4	206	09	42 N	N	132	46 W	1.32
02	02	820626	18.52	06	02	03	08	01	4	206						4.63
02	03	820626	18.52	03	02	06	08	01	4	206						4.63
02	04	820626	18.52	01	04	05	08	01	4	206						6.17
02	05	820626	18.52	04	05	01	12	12	4	206						7.41
02	06	820626	18.52	03	06	02	12	12	4	206						5.56
02	07	820626	18.52	05	01	04	08	01	4	206						5.86
02	08	820626	18.52	01	04	05	08	01	4	206						5.86

3	$=$	3	$=3$	33	33
\pm	∞	\pm	onm	O10	\cdots
\mathcal{B}	\cdots	\cdots	\cdots	\cdots	以
\geq	z	$\underline{2}$	$z z$	$\geq \geq$	$z x$
응	\％	m	が	－m	答年
$\stackrel{\circ}{8}$	$\stackrel{8}{8}$	－	∞	－10	$\bigcirc{ }^{\circ}$

而

$=$	3	33	3	3	3	33
\sim	W	응	\cdots	M	9	
$\underset{\sim}{\circ}$	을	$\underset{\Xi}{\Psi}$	\pm	\pm	$\underset{\sim}{\square}$	$\underset{\Psi}{\Psi}$
z	z	$z \geq$	$\underline{2}$	z	z	\boldsymbol{z}
\mp	¢	∞	in	心	\sim	48
\cdots	\cdots	ツ	－	－	二	二二

BEAUF．COURSE

SERIES	LEG	date	SPEED KM/HR	OBFERYER-CDDES			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. } \\ & \text { VERT } \end{aligned}$		BEAUF. NO.	COURSE (DEG.)		$\triangle \mathrm{PO}$		LION	$\begin{aligned} & \text { KM } \\ & \text { IN LEG } \end{aligned}$
04	04	820630	19.45	04	05	01	02	02	5	202					6.48
04	05	820630	19.45	05	01	04	02	02	5	202					8.10
04	06	820630	19.45	02	03	06	02	02	5	202					4.86
04	07	820630	19.45	02	06	03	02	02	5	202					6.48
04	08	820630	19.45	03	06	02	02	02	5	202	10	41 N	N	14208 W	6.16
04	09	820630	19.45	01	04	05			5	202					4.86
05	01	820630	19.45	05	01	04			5	202					3.57
05	02	820630	19.45	05	01	04			5	202		29 N	N	14216 W	0.32
01	01	820701	19.45	02	06	03			2	308	10	11 N	N	14248 W	6.16
01	02	820701	19.45	02	03	06			2	308					7.13
01	03	820701	19.45	06	03	02			3	308					5.83
01	04	820701	19.45	06	02	03			3	308					6.81
01	05	820701	19.45	01	04	05			4	308					3.57
02	01	820701	19.45	05	01	04	04	02	4	308					6.48
02	02	820701	19.45	04	05	01	03	02	4	308					23.34
03	01	820701	19.45	01	04	05			5	308	10	44 N	N	14324 W	6.48
03	02	820701	19.45	04	05	01			5	308					6.48
03	03	820701	19.45	05	01	04			5	308					6.48
03	04	820701	19.45	01	04	05			5	308					7.13
03	05	820701	19.45	04	05	01			5	308	10	53 N	N	14342 W	5.83
03	06	820701	19.45	05	01	04			5	308					6.48
03	07	820701	19.45	06	03	02			5	308	10	57 N	N	14348 W	6.48
03	08	820701	19.45	06	02	03	12	12	5	308					6.48
03	09	820701	19.45	03	02	06	12	12	5	308					6.48
03	10	820701	19.45	03	06	02	12	01	5	308					6.48
03	11	820701	19.45	02	06	03	12	01	5	308					6.81
03	12	820701	19.45	02	03	06	12	01	5	308					6.48
03	13	820701	19.45	01	04	05	12	01	5	308					6.16
03	14	820701	19.45	04	05	01	12	02	5	308					6.48
03	15	820701	19.45	05	01	04	12	02	5	308					1.94
03	16	820701	19.45	02	06	03	12	02	5	308					6.16
03	17	820701	19.45	05	04	01	11	02	5	308					5.19
03	18	820701	19.45	04	01	05	11	02	5	308					6.16
03	19	820701	19.45	01	05	04	11	02	6	308					6.81
03	20	820701	19.45	06	02	03	11	02	5	308					6.48
03	21	820701	19.45	06	03	02	11	02	5	308	11	23		14428 W	7.78

$3=3$	3	3	3	3	3	$=$
可品：	m	\bigcirc	N	M	7	\％
ずす	－	－	E	E	－	等
z z^{2}	x	z	z	z	z	z
N～～\％	\％	응	ㅇ	－	N	$\stackrel{\circ}{8}$
ニニ	－	\cdots	ロ	\cdots	m	\cdots

 $\mathfrak{\sim} \dot{\sim}$

SERIES	LEG	dATE	SPEED KM/HR	$-\frac{Q B S E R V E R}{R E T} G \frac{C O D E S}{R E C} .$			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. } \\ & \hline \text { UERT. } \end{aligned}$		$\begin{gathered} \text { BEAUF. COURSE } \\ \text { NO. (DEG.) } \end{gathered}$		LATITUDE LONGITUDE						
03	01	820712	18.52	05	04	01	12	12	3	167	18	39	N	157	24	W	3.40
03	02	820712	18.52	05	04	01	12	12	4	167							4.32
03	03	820712	18.52	06	02	03	12	12	4	167							6.17
03	04	820712	18.52	03	02	06	12	12	4	167							6.17
03	05	820712	18.52	03	06	02	12	12	4	167							6.17
03	06	820712	18.52	04	01	05	01	01	4	167							6.17
03	07	820712	18.52	05	04	01	01	01	4	167							6.17
03	08	820712	18.52	01	05	04	03	01	4	167	18	39	N	157	24	W	6.48
03	09	820712	18.52	03	06	02	03	01	4	167							4.63
03	10	820712	18.52	03	06	02	04	01	4	158							1.85
03	11	820712	18.52	02	06	03	04	01	4	158							6.17
03	12	820712	18.52	02	03	06	04	01	4	158							5.56
03	13	820712	18.52	04	01	05	04	02	5	158							6.17
03	14	820712	18.52	05	04	01	04	02	5	158							6.17
03	15	820712	18.52	01	05	04	04	02	5	158							6.48
03	16	820712	18.52	02	03	06	04	02	5	158	18	19	N	157	20	W	6.17
03	17	820712	18.52	06	03	02	04	02	5	158							5.86
03	18	820712	18.52	06	02	03	04	02	5	158							4.63
03	19	820712	18.52	06	02	03	04	02	5	158	18	11	N	157	11	W	0.31
01	01	820713	18.52	02	06	03			6	162	16	21	N	156	41	V	6.48
02	01	820713	18.52	02	06	03			5	162	15	31	N	156	31	W	9.57
02	02	820713	18.52	02	03	06			5	162							5.25
02	03	820713	18.52	06	03	02			5	162							1.54
02	04	820713	18.52	01	04	05			5	162							7.10
02	05	820713	18.52	05	01	04	04	01	5	162							6.17
02	06	820713	18.52	04	05	01	04	01	5	162							6.17
02	07	820713	18.52	01	04	05	04	01	5	162							6.17
02	08	820713	18.52	05	01	04	04	01	5	162							6.17
02	09	820713	18.52	04	05	01	04	01	5	162							6.17
02	10	820713	18.52	06	02	03	04	01	5	162							6.17
02	11	820713	18.52	06	03	02	04	01	5	162							7.72
02	12	820713	18.52	02	03	06	04	01	5	162	14	57	N	156	22	W	6.17
02	13	820713	18.52	02	06	03	04	01	5	162							6.17
02	14	820713	18.52	03	06	02	04	01	5	162							5.86
02	15	820713	18.52	03	02	06	04	01	5	162							6.48
02	16	820713	18.52	01	04	05	04	02	5	162							4.63

SERIES LEG DATE SPEED GBSERUER CODES SUN POSITION BEAUF．COURSE POSITION KM

$3=$	3	3	$=$	3	3	33	3
$\pm{ }_{\text {\％}}$	\％	$\stackrel{\sim}{\sim}$	\％	\％	罥	－	m
号品	品	品	品	盟	13	留品	吕
$z \mathbf{z}$	z	z	z	z	z	z	z
¢？	～	깐	is	$\hat{}$	N	へワ	－
\pm	\cong	\because	－	＝	＝	二＝	＝

3	33	3	3	3	3	$=$
\cdots	¢	\％	F	$\stackrel{N}{N}$	＝	n
罢	出䍃	［12	㗐	$\stackrel{\square}{n}$	豆	$\stackrel{\sim}{\sim}$
z	$z z$	z	z	z	z	z
W	is：	－	앙	－	웅	8
아응	응	\bigcirc	\bigcirc	－	－	잉

 $\stackrel{-}{\circ}$

SERIES	LEG	date	SPEED Kh/HR	LEASTERUER CODES			SUN PORZ		BEAUF . NO.	COURSE (DEG.)					$\stackrel{K M}{\text { IN }} \text { LEG }$
04	14	820715	16.67	05	01	04	08	02	3	063					8.33
04	15	820715	16.67	04	05	01	08	02	3	063					4.17
04	16	820715	16.67	04	05	01			3	063	09	53	N	15326	0.28
01	01	820716	17.59	04	05	01	12	03	3	053	10	50	N	15146 W	10.56
01	02	820716	17.59	01	04	05	12	02	3	053					8.50
01	03	820716	17.59	05	01	04	01	02	3	053					4.40
01	04	820716	17.59	02	06	03	01	02	3	053					5.57
01	05	820716	17.59	04	05	01	01	02	3	053	10	59	N	15132 W	7.62
01	06	820716	17.59	01	04	05	01	02	3	053					8.80
01	07	820716	17.59	05	01	04	01	02	4	053					9.09
01	08	820716	17.59	04	05	01	01	02	4	053					3.52
02	01	820716	17.59	06	03	02	01	01	3	053	11	07	N	15119 W	3.52
02	02	820716	17.59	06	03	02	01	01	3	056					1.47
02	03	820716	17.59	06	02	03	01	01	3	056					5.86
02	04	820716	17.59	03	02	06	12	12	3	056					8.21
02	05	820716	17.59	03	06	02	12	12	3	056					5.28
02	06	820716	17.59	04	05	01	12	12	3	056					1.47
03	01	820716	17.59	06	02	03	12	12	3	056	11	17	N	15106 W	6.16
03	02	820716	17.59	06	03	02	12	12	3	056					5.57
03	03	820716	17.59	02	03	06	12	12	3	056	11	21	N	15101 W	4.40
03	04	820716	17.59	04	01	05			3	056					8.80
03	05	820716	17.59	05	04	01	08	01	3	056					8.80
03	06	820716	17.59	01	05	04	08	01	3	056					8.80
03	07	820716	17.59	04	01	05	08	01	3	056					8.80
03	08	820716	17.59	05	04	01			3	056					8.80
03	09	820716	17.59	01	05	04	08	02	3	056					7.92
04	01	820716	17.59	02	03	06	08	02	3	060		38	N	15035 W	5.86
04	02	820716	17.59	02	06	03			3	060					1.47
04	03	820716	17.59	01	04	05			3	060					5.86
04	04	820716	17.59	02	06	03			3	060					6.16
04	05	820716	17.59	03	06	02	08	02	3	060					5.57
04	06	820716	17.59	03	02	06	08	03	3	060					6.45
04	07	820716	17.59	06	02	03			3	060					5.57
04	08	820716	17.59	06	03	02			3	060	11	49	N	15018 W	4.11
01	01	820717	17.59	02	03	06			3	116	10	51	N	14844 W	6.16
01	02	820717	17.59	06	03	02	10	02	3	116					8.50

SERIES	LEG	DATE	SPEED KM/HR	GEBSERVER CODES.			$\begin{aligned} & \text { SUN POSIITION } \\ & \text { HORZ. } \end{aligned}$		$\begin{gathered} \text { BEAUF. COURSE } \\ \text { NO. (DEG.) } \end{gathered}$		POSIIIOM						KM IN LEG
01	03	820717	17.59	04	01	05	10	02	3	116							4.40
01	04	820717	17.59	05	04	01	10	02	3	116	10	45	N	148	33	W	5.86
02	01	820717	17.59	05	01	04	10	02	3	116	10	42	N	148	29	W	4.40
02	02	820717	17.59	03	02	06	10	02	2	116							6.16
03	01	820717	17.59	06	02	03	10	02	3	116	10	37	N	148	25	W	7.04
03	02	820717	17.59	04	01	05	10	01	3	116							5.28
03	03	820717	17.59	05	04	01	10	01	3	116							5.86
03	04	820717	17.59	01	05	04	11	01	3	116							6.16
04	01	820717	17.59	06	03	02	11	01	3	116	10	29	N	148	14	W	6.45
04	02	820717	17.59	02	03	06	11	01	2	116	10	25	N	148	07	W	5.57
04	03	820717	17.59	02	06	03	11	01	2	116							4.40
04	04	820717	17.59	01	04	05	10	01	3	116							4.40
04	05	820717	17.59	05	01	04	10	01	3	116							5.86
04	06	820717	17.59	04	05	01			3	116							2.93
05	01	820717	17.59	03	06	02	12	12	3	116	10	22	N	147	59	W	5.86
05	02	820717	17.59	03	02	- 06	12	12	3	116							5.86
05	03	820717	17.59	02	06	03	12	12	3	116							5.86
05	04	820717	17.59	04	01		12	12	3	116	10	17	N	147	50	W	5.86
05	05	820717	17.59	01	04	05	12	12	3	116							6.45
06	01	820717	17.59	02	03	06	12	12	3	116	10	14	N	147	39	W	4.40
06	02	820717	17.59	04	01	05	06	12	3	116							5.86
06	03	820717	17.59	05	04	01	06	01	3	116							5.86
07	01	820717	17.59	01	05	04	06	01	3	116							4.11
07	02	820717	17.59	02	06	03	06	02	3	116							5.57
07	03	820717	17.59	03	06	02	06	02	3	116	10	06	N	147	25	W	6.16
07	04	820717	17.59	03	02	06	06	02	3	116							5.57
07	05	820717	17.59	01	04	05	06	02	3	416							5.86
07	06	820717	17.59	05	01	04	06	02	3	116							5.86
07	07	820717	17.59	04	05	01	06	02	3	116							6.16
07	08	820717	17.59	03	02	06	06	03	3	116							2.64
07	09	820717	17.59	03	02	06	06	03	3	116	09	57	N	147	09	W	0.29
01	01	820718	17.59	04	01	05	10	03	3	116	09	04	N	145	31	W	3.52
02	01	820718	17.59	05	04	01	10	03	3	116	09	04	N	145	27	W	5.28
02	02	820718	17.59	01	05	04	10	03	3	116							5.86
02	03	820718	17.59	02	03	06	10	03	3	116							5.86
02	04	820718	17.59	06	03	02	10	02	3	116							5.86

SERIES	LEG	date	SPEED KM/HR	OBSERUER_CODES LEFT RIGHT REC.			$\begin{aligned} & S U N P O S I T I O N \\ & H O R Z . \\ & V E R T \end{aligned}$		beadf. NO.	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$	LATITUUE LOLONGITUDE					$\stackrel{\text { KKi }}{\text { IN }}$
02	01	820719	19.45	03	06	02	01	02	2	051	07		N	141	46 W	4.86
02	02	820719	19.45	02	06	03	01	02	3	051						4.86
02	03	820719	19.45	04	01	05	01	02	3	051						6.48
02	04	820719	19.63	05	04	01	01	02	3	051	07	20	N	141	37 l	6.54
02	05	820719	19.63	01	05	04	01	02	3	051						2.29
03	01	820719	19.63	04	01	05	01	01	3	051	07	21	N	141	34	5.23
03	02	820719	19.63	05	04	01	01	01	3	051						6.54
03	03	820719	19.63	01	05	04	01	01	3	051						6.54
03	04	820719	19.63	02	06	03	01	01	3	051						6.54
03	05	820719	19.63	03	06	02	01	01	3	051						9.16
03	06	820719	19.63	01	05	04	01	01	3	051						4.91
03	07	820719	19.45	03	02	06	12	12	3	051						5.51
03	08	820719	19.45	06	02	03	12	12	3	051						7.78
04	01	820719	19.45	01	04	05	12	12	3	051	07	43	N	141	10 W	4.21
05	01	820719	19.45	04	05	01			3	051	07	48	N	141	08 W	3.57
05	02	820719	19.45	01	04	05			3	051						6.48
05	03	820719	19.45	05	01	04	08	01]	051						6.48
05	04	820719	19.45	04	05	01	08	01	3	051						6.48
05	05	820719	19.45	02	03	06	08	01	3	051	07	56	N	140	55	6.48
05	06	820719	19.45	06	03	02	08	01	3	051						6.48
05	07	820719	19.45	06	02	03	08	01	3	051						6.48
05	08	820719	19.45	03	02	06	08	01	3	051						6.81
05	09	820719	19.45	03	06	02	08	01	3	051	08	07	N	140	43	6.16
05	10	820719	19.45	02	06	03	08	02	,	051						8.10
06	01	820719	19.45	04	01	05			3	051	08	13	N	140	33 W	4.21
07	01	820719	19.45	04	01	05			3	051	08	19	N	140	26 W	4.21
07	02	820719	19.45	05	04	01			3	051						7.45
07	03	820719	19.45	05	04	01			3	051	08	23	N	140	20	0.32
01	01	820720	19.45	04	01	05			4	051	09	34	N	138	40 W	8.10
01	02	820720	19.45	05	04	01			4	051						6.48
01	03	820720	19.45	01	05	04	02	03	4	051						8.75
01	04	820720	19.45	03	02	06			3	051						5.83
01	05	820720	19.45	04	01	05			,	051						4.86
01	06	820720	19.45	05	04	01	01	02	3	051						6.48
01	07	820720	19.45	01	05	04	01	02	3	051						6.81
02	01	820720	19.45	03	06	02	01	02	3	051	09	46	N	138	17	6.48

SERIES	LEg	date	$\begin{aligned} & \text { SPEED } \\ & \mathrm{KM} / H R \end{aligned}$	$\frac{O B E E V E R}{\text { LEFT }} \text { RIGHT } \frac{C D E S}{R E C .}$			SUN POSITION horz. VERT.		$\begin{aligned} & \text { BEAUF. } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$					ITUDE	$\stackrel{K H}{I N}{ }^{\text {LEG }}$
02	02	820720	19.45	02	06	03	01	02	3	051						6.48
02	03	820720	19.45	02	03	06	12	12	3	051						6.48
02	04	820720	19.45	06	03	02	12	12	3	051						5.51
02	05	820720	19.45	06	03	02	12	12	3	055	09	54	N	138	07 W	2.59
02	06	820720	19.45	04	01	05	12	12	3	055						6.48
02	07	820720	19.45	05	04	01	12	12	3	055						8.10
02	08	820720	19.45	03	02	06	12	12	3	055						4.86
02	09	820720	19.45	04	05	01	12	12	2	055						6.48
02	10	820720	19.45	01	04	05			2	055						6.48
02	11	820720	19.45	05	01	04			2	055						4.86
03	01	820720	19.45	02	06	03			2	055	10	06	N	137	49 W	7.13
03	02	820720	19.45	02	03	06			2	055						6.16
03	03	820720	19.45	06	03	02	12	12	1	055						6.16
03	04	820720	19.45	06	02	03	12	12	1	055						6.81
03	05	820720	19.45	03	02	06	12	12	1	055						6.81
03	06	820720	19.45	03	06	02	08	01	1	055						4.54
03	07	820720	19.45	04	01	05	08	01	1	055						6.48
03	08	820720	19.45	05	04	01	08	01	2	055	10	22	N	137	28 W	4.54
04	01	820720	19.45	01	05	04	08	02	2	055	10	23	N		25 W	3.89
04	02	820720	19.45	04	01	05	08	02	3	055						6.81
04	03	820720	19.45	05	04	01			3	055						6.81
04	04	820720	19.45	01	05	04	08	02	2	055						7.45
04	05	820720	19.45	03	06	02	08	02	2	055	10	30	N	137	13	6.48
04	06	820720	19.45	02	06	03	08	02	2	055						6.48
04	07	820720	19.45	02	03	06	08	02	2	055						6.81
04	08	820720	19.45	06	03	02	08	02	3	055						6.16
04	09	820720	19.45	06	02	03	08	02	3	055						7.13
04	10	820720	19.45	06	02	03	08	02	3	055	10	40	N		56 W	0.32
01	01	820721	18.52	02	06	03	01	03	2	055		47	N		18 W	6.17
01	02	820721	18.52	02	03	06	01	03	2	055						6.79
01	03	820721	18.52	06	03	02	01	02	2	055						5.86
01	04	820721	18.52	06	02	03	01	02	3	055						4.94
01	05	820721	18.52	04	01	05	01	02	3	055						5.56
01	06	820721	18.52	03	02	06	01	02	3	055						6.17
01	07	820721	18.52	03	06	02	01	02	3	055	11	59	N	135	01 W	3.09
01	08	820721	18.52	03	06	02	10	01	3	134						3.09

3	3	$=$	3	3	3	3	$=3$	$=33$	3	33
\pm	8	\％	\cdots	N	近	N	$=8$	ำN	＝	\sim
－	$\stackrel{\square}{\text { ² }}$	$\stackrel{+}{\sim}$	岗	岗	픈	$\stackrel{ \pm}{\text { m }}$	容	ツツッ	ㄲ	感
z	z z	zzz	z							
m	\％	\％	N	$\stackrel{\text {－}}{ }$	\cdots	은	8 in	今mN	\bigcirc	$\pm{ }_{0}^{\circ}$
＝	＝	＝	＝	－	－	＝	＝응	응ㅇㅇ	0	合吕

$\begin{array}{llll}\text { SPEED } & \text { OBSERUER CODES } \\ \text { KH／HR } & \text { SEFT } \\ \text { RIGHT } \\ \text { REC }\end{array}$ SERIES LEG DATE

SERIES	LEG	date	$\begin{aligned} & \text { SPEED } \\ & \mathrm{KM} / \mathrm{HR} \end{aligned}$				$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. VERT. } \end{aligned}$		beauf. NO.	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$							$\stackrel{\text { KH }}{\text { IN }}$
07	01	820722	18.52	04	05	01	10	12	,	134	08		N	131	56	W	2.16
08	01	820722	18.52	06	02	03	12	12	1	134	09	04	N	132	08	W	6.17
08	02	820722	18.52	06	03	02	12	12	1	134							6.79
08	03	820722	18.52	02	03	06	12	12	1	134							4.01
08	04	820722	18.52	04	01	05	12	12	1	134							9.26
08	05	820722	18.52	05	04	01	12	12	1	134							4.01
09	01	820722	18.52	01	05	04	12	12	1	134	08	38	N	131	42	W	9.88
09	02	820722	18.52	04	01	05	12	12	1	134							9.26
09	03	820722	18.52	05	04	01	06	01	,	134							9.26
09	04	820722	18.52	01	05	04	05	01	,	134							8.33
10	01	820722	18.52	02	03	06	05	01	1	134	08	38	N	131	40	W	8.33
10	02	820722	18.52	04	05	01	05	01	1	134							3.09
11	01	820722	18.52	02	06	03	05	02	1	134	08	36	N	131	33	W	5.86
11	02	820722	18.52	03	06	02	05	02	1	134							6.17
11	03	820722	18.52	03	02	06	05	02	1	134							6.17
11	04	820722	18.52	06	02	03	05	02	1	134							6.79
11	05	820722	18.52	06	03	02	05	02	1	134							8.64
11	06	820722	18.52	02	03	06	05	03	1	134							2.16
11	07	820722	18.52	02	03	06	05	03	1	134	08	22	N	131	18	W	0.31
01	01	820723	19.45	02	06	03	01	03	2	042	07	04	N	129	56	U	6.48
01	02	820723	19.45	02	03	06	01	03	2	042							7.78
01	03	820723	19.45	06	03	02	01	02	2	042							5.83
01	04	820723	19.45	01	04	05	01	02	2	042							5.83
01	05	820723	19.45	05	01	04	01	02	2	042							6.48
01	06	820723	19.45	04	05	01	01	02	2	042							7.13
01	07	820723	19.45	03	02	06	01	02	2	042	07	21	N	129	38	W	6.16
01	08	820723	19.45	06	02	03	01	02	2	042							6.48
01	09	820723	19.45	06	03	02	01	01	2	042							6.48
01	10	820723	19.45	01	04	05	01	01	2	042							4.21
02	01	820723	19.45	02	03	06	12	12	2	040	07	31	N	129	26	v	5.83
02	02	820723	19.45	02	06	03	12	12	2	040							7.13
03	01	820723	19.45	05	04	01	12	12	3	040	07	40	N	129	20	W	5.83
03	02	820723	19.45	01	05	04	12	12	3	040							6.48
03	03	820723	19.45	04	01	05	12	12	3	040							6.48
03	04	820723	19.45	02	03	06	12	12	2	040							6.48
03	05	820723	19.45	02	06	03	12	12	2	040	07	50	N	129	08	W	6.48

3	$=$	3	3	33	3	3	3 $=1$	$=$
0	A	\bar{m}	\pm	¢08	9	\pm	M M	\pm
8	N	$\stackrel{\sim}{\sim}$	®	パㄲํ	$\stackrel{\sim}{\sim}$	ํ	ำจํ	ํ
z	z	z	z	z $=$	z	z	$x \boldsymbol{z}$	z
¢	\simeq	N	N	～～0	은	－	べか	＋
\％	－	－	－	\％\％	응	응	으으	은

Nッペーシ

3	$3 \boldsymbol{3 3}$	$=$	3	3	2	3	3
4		4	8	M	응	$\stackrel{\sim}{2}$	$\underline{\sim}$
皆	式哭哭菏	$\stackrel{\sim}{\square}$	$\xrightarrow{8}$	－	～	$\stackrel{\sim}{\sim}$	－
z	zzzz	z	z	z	z	z	z
0	出式吅	\％	m	is	\cdots	品	字
＝	二二＝？	은	은	안	은	망	－

————————NNNNNNNMMMMMMMMMMMMMMMMMMNN

3	33	3	$=3$	$=$	3	3
5	¢ ${ }_{\text {¢ }}$	\%	\bigcirc	∞	앙	17
N	N®	$\stackrel{\infty}{ \pm}$	$\stackrel{\infty}{\rightleftharpoons}$	찬	ミ	ㅊ
z	z	z	$z z$	z	z	z
m	은	\pm	- N	a	\bigcirc	晏
O	응:	-		-	응	=

N
NN

IN LEG

DEG.) LATITUDE LONGITIDE

SERIES	LEG	date	$\begin{aligned} & \text { SPEED } \\ & \mathrm{KM} / \mathrm{HR} \end{aligned}$	OBSERUER CODES LEFT RIGHT REC.			$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. UERT. } \end{aligned}$		$\begin{aligned} & \text { BEAUF. } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$		POSIIION				$\text { IN }_{\text {KM }}^{\text {LEG }}$
01	22	820731	19.45	01	05	04	12	12	4	350						6.48
01	23	820731	19.45	04	01	05	12	12	3	350						6.48
01	24	820731	19.45	05	04	01	12	12	3	350						6.48
01	25	820731	19.45	01	05	04	12	12	3	350						8.10
01	26	820731	19.45	03	02	06	12	12	3	350	22	48	N	115	W	4.86
01	27	820731	19.45	03	06	02	10	01	3	350						6.48
01	28	820731	19.45	02	06	03	10	01	3	350						6.81
01	29	820731	19.45	02	03	06	10	01	3	350						6.81
01	30	820731	19.45	06	03	02	10	01	3	350	23	01	N	115	W	5.83
01	31	820731	19.45	06	02	03	10	02	3	350						9.40
01	32	820731	19.45	04	05	01	10	02	3	350	23	08	N	115	W	0.32
02	01	820731	19.45	04	05	01	10	03	3	351						1.62
02	02	820731	19.45	01	04	05	10	03	3	351	23	13	N	115	W	5.51
03	01	820731	19.45	05	01	04	10	03	3	351	23	16	N	115		4.21
03	02	820731	19.45	05	01	04	10	03	3	351	23		N	115		0.32
01	01	820801	18.52	01	04	05			4	351	25	15	N	115		3.09
01	02	820801	18.52	05	01	04			4	351						6.17
01	03	820801	18.52	04	05	01			4	351						7.72
01	04	820801	18.52	02	06	03			4	351						6.17
01	05	820801	18.52	01	05	04			4	351						4.63
01	06	820801	18.52	04	01	05	02	02	4	351						6.17
01	07	820801	18.52	05	04	01	02	02	4	351						7.10
01	08	820801	18.52	06	03	02	02	02	4	351	25	36	N	115		5.25
01	09	820801	18.52	02	03	06	02	01	4	351						6.17
01	10	820801	18.52	02	06	03	02	01	4	351						6.17
01	11	820801	18.52	03	06	02	02	01	4	351						6.17
01	12	820801	18.52	03	02	06	02	01	4	351						6.17
01	13	820801	18.52	06	02	03	02	01	4	351						6.17
01	14	820801	18.52	04	01	05			4	351						6.17
01	15	820801	18.52	05	04	01			4	351						7.72
01	16	820801	18.52	02	06	03	02	01	3	351	26	02		115		6.79
01	17	820801	18.52	04	01	05	02	01	3	351						4.01
01	18	820801	18.52	01	05	04			3	351						6.17
01	19	820801	18.52	04	05	01	12	12		351						7.10
01	20	820801	18.52	06	03	02	12	12	3	351	26	14	N	116	N	5.25
01	21	820801	18.52	02	03	06	12	12	3	351						6.17

SERIES	LEG	date	SPEED KM/HR	GEBSERUER CODES			$\begin{aligned} & \text { SUN PQSITION } \\ & \text { HORZ. } \\ & \hline \end{aligned}$		beauf. NO.	$\begin{aligned} & \text { COURSE } \\ & \text { (DEG.) } \end{aligned}$				$\begin{aligned} & \operatorname{TION} \\ & \text { LONG } \end{aligned}$	Tū	${ }_{\text {IN }}^{\text {KM }} \text { LEG }$
01	22	820801	18.52	02	06	03	12	12	3	351						6.17
01	23	820801	18.52	03	06	02	12	12	3	351						6.17
01	24	820801	18.52	03	02	06	12	12		351						6.17
01	25	820801	18.52	06	02	03	12	12	3	351						6.17
01	26	820801	18.52	04	01	05	12	12	3	351						6.79
01	27	820801	18.52	05	04	01	11	01	3	351						5.56
01	28	820801	18.52	01	05	04	10	01	3	351						6.17
01	29	820801	18.52	04	01	05	09	01	3	351						6.17
01	30	820801	18.52	05	04	01	09	01	3	351						6.17
01	31	820801	18.52	01	05	04	10	01	3	351						7.41
01	32	820801	18.52	02	03	06	10	01	3	351	26	52	N	116	06	4.94
01	33	820801	18.52	02	06	03	10	02	3	351						6.48
01	34	820801	18.52	03	06	02	10	02	3	351						5.86
01	35	820801	18.52	03	02	06	10	02	3	351						6.17
01	36	820801	18.52	06	02	03	10	02	3	351						6.17
01	37	820801	18.52	06	03	02	10	02	3	351	27	09	N		07 W	6.17
01	01	820802	19.45	02	03	06			2	351	29	13	N	116	24	3.57
01	02	820802	19.45	02	03	06			2	035						2.27
01	03	820802	19.45	06	03	02			2	035						6.48
01	04	820802	19.45	06	02	03			2	035						7.13
02	01	820802	19.45	03	02	06			2	035						5.51
02	02	820802	19.45	03	06	02			,	035	29	26	N	116	15	6.48
02	03	820802	19.45	02	06	03			1	035						6.48
02	04	820802	19.45	02	03	06			1	035	29	32	N		09	3.24
03	01	820802	19.45	02	03	06			,	035	29	33	N	116	09 W	1.94
03	02	820802	19.45	06	03	02				035						5.83
03	03	820802	19.45	06	02	03			1	035						4.21
03	04	820802	19.45	04	01	05			,	035						5.51
04	01	820802	19.45	05	04	01			1	035	29	43	N		00 W	8.75
05	01	820802	19.45	06	02	03			1	335	29	49	N	115	54	4.21

 IIATE
YRMOMy

 8
 응

SIGHTINGS BY SFECIES

LONGITUDE
DEG MIN
09531 W
SFECIES：COASTAL SPOTTEN XOLPHIN

	2 0 0
－	
家	
寛	\pm
2－	cid
$\stackrel{\square}{\square}$	
－	
䎟	
0	
运	8
必	
爯	
录乒	
琺砉	\cdots
zı	
三山	
为	
O1．	
H	
页采	
바조	
－	
宔耑	N
或	－
on	
\square	\cdots
山	\bigcirc

IATE SERIES
YRMODY
8

mrmootommruownwnoonoryom

ETECTEI PEFF:
BY GIST. (KM) DEG MIN

SIGHT SUN FOSITION BEAUF:
NUMBER HORZ. UERT NUMBER

SIGHTINGS BY SFECIES

					SFECIES: WHITEBELLY SFINNER DOLPHIN (STENELLA LONGIROSTRIS)								SFECIES CODE: 11		
dite	SERIES	LEG	SIGHT	SUN POSITION	BEAUF.	IETECTED	PERF.	LATI	ITUAE		LONGI	Itune	PROFORTION	MEAN SCH	SIZE EST
YRMOIY			NUMBEF	HORZ. VERT.	NUMBER	BY	IIST. (KM)	IEG	HIN		DEG	MIN	(\% OF SCHOOL)	BEST	LOW
820622	06	06	09	0201	2	03	2.6	06	44 N	N	124	$29 W$	43.4	280.0	210.0
820627	02	01	01		3	03	1.5	06	34 N	N	135	18 W	28.2	80.0	64.0
820629	01	04	01		4	04	0.2	12	17 N	N	139	02 W	46.7	67.0	53.0
820630	01	18	01		5	01	2.7	11	23 N	N	141	41 W	94.5	70.0	53.0
820630	04	08	04	0202	5	06	0.0	10	39 N	N	142	10 W	45.0	123.0	68.0
820701	03	21	01	1102	5		0.0	11	24 N	N	144	30 W	25.0	15.0	7.0
820714	06	01	01	0401	4	04	1.8	11	26 N	N	155	38 W	71.7	122.0	95.0
820714	09	01	03		4	01	0.2	10	52 N	N	155	33 W	100.0	2.0	2.0
820715	04	10	01	$08 \quad 02$	3	05	0.3	09	45 N	N	153	44 W	50.0	5.0	5.0
820716	03	09	04	$08 \quad 02$	3		0.0	11	37 N	N	150	36 W	98.6	73.0	56.0
820717			01	1002	3	01	0.6	10	42 N	N	148	29 W	39.2	96.0	65.0
820717	03	04	03	1101	3	01	0.6	10	31 N	N	148	15 W	46.0	151.0	121.0
820717	05	05	05	$12 \quad 12$	3	01	3.8	10	15 N	N	147	45 W	87.5	95.0	78.0
820718	01	01	01	1003	3	01	1.4	09	03 N	N	145	30 W	86.0	583.0	467.0
820718	02	30	02	0601	3	03	1.2	08	16 N	N	144	01 W	75.0	202.0	172.0
820718	03	01	03	0602	3	05	2.2	08	15 N	N	143	56 W	86.0	43.0	103.0
820718	04	03	06	0602	3	06	1.5	08	11. N	N	143	52 W	85.0	43.0	25.0
820719	01	03	01	0102	2	02	1.6	07	09 N	N	141	53 W	76.5	96.0	64.0
820719	04	01	05	$12 \quad 12$	3	04	2.6	07	43 N	N	141	09 W	5.0	75.0	63.0
820724	02	04	08	0201	1	01	4.3	10	27 N	N	126	34 W	6.7	500.0	400.0
820724	06	03	17	0801	1	05	0.5	11	07 N		125	59 W	43.3	170.0	141.0
820725	01	07	02	1002	2	03	5.6	10	43 N	N	123	52 W	52.5	376.0	310.0

						SPECIES: STRIPED DOLFHIN (5. COERULEOALBA)									SPECTES COUE: 13		
DATE	SERIES	LEG	SIGHT	SUd	PQSIIION	BEAUF.	DETECTED	PEKF.	LaTI	ITUAE		L0N6	TTU		FROPORTION	MEAN SCHO	L STEEEST
YRMOEIY			NUMBER	HORZ	- VERT.	NUMBER	BY	DIST. (K,	IEG	MIN		IEG			(\% OF SCHOOL)) BEST	Low
820518	01	04	01	10	02	3	05	0.5	16	28 N	N	108	29	W	75.0	10.0	7.0
820518	04	07	08			1	02	0.9	15	53 N		107	52	W	75.0	14.0	10.0
820518	05	09	11	05	02	3	05	0.1	15	25 N	N	107	26	W	100.0	10.0	8.0
820521	02	08	03	12	12	5	04	1.0	08	48 N		099	23	W	100.0	15.0	11.0
820522	04	02	11			4	05	0.8	10	28 N	N	076	16	W	100.0	168.0	138.0
820522	06	04	16			3	06	0.4	10	43 N	N	095	42	W	100.0	119.0	71.0
820522	09	04	22			3	06	0.3	10	43 N	N	095	09	W	33.3	6.0	12.0
820523	01	08	02	09	02	4	01	2.2	08	26 N	N	093	47	W	100.0	0.0\%	15.0
820523	03	06	06	04	01	3	01	3.8	07	37 N	N	093	17	W	100.0	226.0	151.0
820523	04	06	09	04	03	3	06	1.0	07	17 N		093	09	W	33.3	13.0	9.0
820610	01	05	01	08	02	4	04	0.9	09	17 N	N	105	09	W	100.0	14.0	8.0
820611	04	01	08	12	12	4	05	0.2	06	56 N	N	105	52	W	90.0	188.0	98.0
820612	01	02	01	04	02	3	01	2.4	08	53 N	N	107	43	W	100.0	38.0	31.0
820614			03			3	03	3.5	11	17 N	N	109	54	W	100.0	28.0	22.0
820617	02	04	01	03	12	4	04	0.2	06	36 N	N	113	50	W	100.0	37.0	30.0
820623	04	03	01	11	02	5	04	2.5	09	08 N	N	127	01	W	100.0	14.0	8.0
820626	01	09	01	08	02	4	02	0.5	09	45 N	N	132	42	W	100.0	28.0	21.0
820701	03	21	01	11	02	5		0.0	11	24 N	N	144	30	W	25.0	15.0	7.0
820702	01	14	01	12	12	6	04	1.0	13	06 N		147	01	W	100.0	20.0	15.0
820719	03	08	04	12	12	3	02	2.0	07	38 N	N	$14 T$		W	100.0	75.0	58.0
820722	05	01	03	10	02	1	02	1.9	09	$14 N$		132	17	W	70.0	25.0	19.0
820722	10	01	11	05	01	1	02	2.6	08	36 N	N	131	38	W	100.0	29.0	17.0
820723	03	13	02			3	04	1.6	08	14 N	N	128	44	W	100.0	12.0	12.0
820724			20			1	04	0.0	11	20 N	N	125	48	W	100.0	40.0	30.0
820724	03	01	10	12	12	1	04	0.1	10	39 N		126	28	W	100.0	168.0	132.0
820724	08	01	21	08	02	1	01	3.9	11	$24 N$		125	44	W	100.0	0.0%	0.0*

SIGHTLVGS BY SFECIES

					SFECLES: ROUGH-TOOTHED DOLFHIN (STENO BREDANENSIS)							SFECIES CODE: 15		
IATE	SERIES	LEG	SIGHT	SUN FOSITION	BEAUF.	detected	FERF.	LATI	ITUDE	LONGI	Itune	FROFORTCON	MEANSS	- SI2E ESI
YRMOIT			NUMBER	HORZ. VEFT.	NUMEER	BY	IIST. (KM)	UEG	MIN	DEG	MIN	(\% OF SCHOOL)	BET	LOW
820519	01	02	01		3	02	0.5	13	43 N	105	33 W	60.7	7.0	6.0
820520			01		6	04	8.6	10	52 N	102	52 W	100.0	4.0	4.0
820522	03	01	10		3	04	0.2	10	26 N	096	21 W	100.0	5.0	5.0
820529	01	19	03		3	04	2.1	14	03 N	094	57 W	100.0	5.0	5.0
820601	05	08	05	0801	3	04	6.8	14	55 N	099	11 W	1.0	208.0	151.0
820602	02	01	01	0502	3	01	0.1	15	20 N	099	21 W	100.0	15.0	13.0
82000%	06	05	02	0301	2	01	0.1	11	43 N	105	10 W	77.5	10.0	7.0
820609	09	01	06	0403	2	02	2.1	11	23 N	105	09 W	5.0	113.0	5.0
820620	06	06	03	$12 \quad 12$	4	01	1.6	13	10 N	120	32 W	100.0	3.0	3.0
820713			01	1212	5	04	0.1	15	40 N	156	33 W	100.0	12.0	8.0
820717	0.7	08	08	0603	3	03	3.8	09	58 N	147	09 W	33.3	7.0	5.0
820718	04	01	04	0602	3	04	0.3	08	14 N	143	5 F	50.0	7.0	7.0
820719	02	05	03	0102	3	05	0.1	07	23 N	141	$34 W$	100.0	13.0	13.0
820720	01	07	01	0102	3	05	4.0	09	50 N	138	23 W	25.0	25.0	45.0
820720	02	11	03		2	05	1.9	10	05 N	137	51 W	50.0	18.0	16.0
820720	03	08	04	0801	2	04	0.3	10	23 N	137	27 W	100.0	8.0	6.0
820730	04	07	05	$10 \quad 03$	2	04	0.9	19	26 N	114	57 W	100.0	13.0	10.0

SIGHTINGS BY SFECIES

					SFECIES: RTSSO:S DOLHHN (GRAmpus gRiseus)						SPECIES CODE: 21		
IATE	SERIES	LEG	SIGHT	SUN FOSITION	beauf.	DETECTED	FERF.	LATI	ITUJE	LONGITUAE	FROFORTION	MEAN SCH	L_SIZE_ESI
YRMOIY			NUMBER	HORZ. VERT.	NUMBEF	BY	\#IST. (KM)		MIN	DEG MIN	(\% OF SCHOOL)	$\overline{B E S T}$	LOW
820521	04	07	08	0802	5	04	0.3	09	07 N	09842 W	40.0	5.0	4.0
820522	02	01	06	1202	3	02	0.1	10	19 N	09633 W	66.7	6.0	4.0
820522	02	05	07		3	06	0.3	10	25 N	09623 W	66.7	8.0	6.0
820522	06	01	15		4	04	0.2	10	40 N	09553 W	100.0	4.0	3.0
820522	09	01	20		3	05	1.4	10	46 N	09521 W	100.0	2.0	2.0
820522	09	01	21		3	05	0.2	10	46 N	09521 W	100.0	1.0	1.0
820527	01	04	02	$05 \quad 02$	4	02	0.2	09	05 H	08821 W	50.0	5.0	4.0
820527	01	06	03	0502	4	05	0.0	09	05 H	08825 W	28.0	10.0	8.0
820529			01		4	04	0.6	13	38 N	09353 W	100.0	1.0	1.0
820601	02	02	01	0102	3	04	1.0	14	20 N	10024 W	100.0	2.0	2.0
820602	03	01	02	0502	3	01	6.1	15	22 N	09925 W	52.0	15.0	14.0
320611	01	09	01	0401	4	05	1.1	06	28 N	10527 W	100.0	2.0	2.0
820622	02	06	02	0701	2	06	1.5	07	30 N	12353 W	6.0	9.0	8.0
820622	03	05	03	$12 \quad 12$	2	02	0.1	07	15 H	12401 W	100.0	5.0	5.0
32062 E	03	01	02		3	01	6.1	10	07 N	13745 W	50.0	2.0	2.0

SPECIES COLE: 22

80$--$
SFEGIES: FACIFIC WHITE-SIDED DOLFHIN
GIGHTINGS BY SFECIES

SIGHTLNGG BY SFECIES

						SPECIES: FALSE KILLER WHALE (fseuilorca Chassidens)						SPECIES CODE: 33		
DATE	SERIES	LEG	SIGHT	SUN	FDSITION	EEAUF.	DETECTED	1 FEFF.	LATI	ITUDE	Longitude	FROFORTION	MEAN_S	LEEEI
YRMOII			NUMBER	HORZ	. VERT.	NUMBER	BY	1HST. (KM)	UEG	MIN	DEG MIN	(\% OF SCHOUL)	EEST	LOW
820618	05	02	02			2	05	1.2		50 N	11620 W	100.0	5.0	7.0
820622	02	06	02	07	01	2	06	1.5		30 N	12353 W	69.0	9.0	8.0
820723	05	02	03	08	02	3	02	0.0		25 N	12828 W	100.0	4.0	7.0

SIGHTINGS By spectes

SIGHTINGS BY GPECIES

					SFECIES: PYGMY SFERK WHALE (KOGIA BREVICEPS)					SFECIES CODE: 47		
DATE	SERIES	LEG	SIGHT	SUN FOSITION	BEAUF.	IETECTED	FERF.	Latituae	LONGTTUDE	PROPORTION	HEAN SCH	I2EEST
YRMODY			NUMBER	HORZ. UERT.	NUMBER	BY	BIST. (Km)	DEG MIN	DEG MIN	(\% OF SCHOOL)	BEST	DV
820608	03	04	03	0401	2	04	0.0	1550 N	10454 W	100.0	1.0	1.0

glohtings by grteres

	species: DWARE GRERM WHALE (kOgIA SImus)									grecies couea 48		
diate	SERIES	Leg	SIGHT	SUN POSIITON	beauf.	dietected	Plerf.	latitume	LONGitude	Propormion	MEAN G6H0	L $512 \leq 63$
Yehtily			Number	HORZ. VERT.	number	EY	WIEI.(Am)	deg Midi	deg min	(\% OF SEHOUL)	bect	Low
820609	07	04	03	$04 \quad 02$	2	01	1.1	11238	10509 W	100.0	1.0	1.0
820609	08	02	05	$04 \quad 03$	2	02	0.8	1124 N	10507 W	25.0	5.0	4.0
820722	07	01	05	$10 \quad 12$	1	05	0.7	0805 N	13200 W	100.0	3.0	3.0
820722	08	05	07	$12 \quad 12$	1	05	1.0	0853 N	13157 W	100.0	2.0	2.0
320722	09	04	10	0501	1	05	0.1	0838 N	13142 W	20.0	3.0	3.0
820724	01	01	02	0203	1	04	0.3	1000 N	12657 W	100.0	2.0	2.0
820724	01	05	03	0202	1	06	0.3	1011	12648 W	100.0	3.0	3.0
820724	02	01	05	0201	1	06	1.3	1021 H	12640 W	100.0	4.0	4.0
820724	02	04	07	0201	1	01	1.0	1026 H	12634 W	100.0	1.0	1.0
820724	06	02	16	0801	1	05	0.5	1105 N	12600 W	100.0	2.0	2.0

SFECIES: BEAKED WAALE

SIGHTINGS BY GPECIES

LEg	SIGHT number	$\begin{aligned} & \text { SUN POSITION } \\ & \text { HORZ. VERT. } \end{aligned}$	Spectes：cuvier s bearedi whale （zIfhius cavirostris）					spectes codes 4		
			beauf． NUMBER	getected BY	II fERF． HIST．（KM）	latitude IEG MIN	longitude deg min	PROFORTION MEAN SCHOOL SIZE EGI		
								（\％OF SCHOOL）	BEST	LOW
0408	09	$05 \quad 12$	2	04	0.1	1540	10741 W	100.0	3.0	3.0
	05	0401	4	01	0.2	0809 N	10505 W	50.0	3.0	3.0
	06	$12 \quad 12$	4	02	0.2	0650 N	10550 W	50.0	3.0	2.0
05	03	$12 \quad 12$	3	02	0.7	1043 N	11256 W	100.0	1.0	1.0
03	07	$12 \quad 12$	2	04	0.5	1131 N	11814 W	66.7	4.0	4.0
02	01	0303		01	1.2	1102 N	12810 W	100.0	2.0	2.0
	02		5	04	0.5	1122 N	14141 W	50.0	1.0	1.0
	04		3	01	0.0	1145 N	13445 W	100.0	2.0	2.0
	12	0701	，	05	0.6	0842 in	15140 W	100.0	3.0	3.0

3 す ずす。

SIGHTINGS BY SPECIES

SIGHTINGS BY SPECIES

SFECIES: MINKE WHALE(B.ACUTOROSTRATA) SFECIES CONE: 71												
date	SERIES	LEg	SIGHT	SUN FOSIIION	beauf.	detected	PERP.	latirude	longitume	propurtion	MEAN SCH	SI2E EST
YRMOIY			NUMBER	HORZ. UERT.	number	BY	IIST. (kM)	deg hin	DEG MIN	(\% OF SCHOOL)	BEST	LOW
820802			13		1	04	3.9	$3024 N$	11610 W	2.7	12.0	21.0

gIGHiNGS By gFECRES

SIGHTINGS BY SFECIES

SIGHTINGS EY GPECTES

SIGHTINGS BY SPECTES

SFECIES: HUMPBACK WHALE (hegaptera novaeangliae) SPECIES CODE: 76												
diate	SERIES	LEG	SIGHT	SUN POSITION	beauf.	detected	PERP.	latitude	longitude	FROPORTION	MEAN SCH	SIIE EST
yrimody			NUMBER	horz. VERT.	number	BY	DIST. (KM)	deg min	DEG MIN	(\% OF SCHOOL)	BEST	LOW
820515			03	$12 \quad 12$	4	06	0.3			50.0	1.0	1.0
820802			13		1	04	3.9	3024	11610	11.0	12.0	21.0

 MATE SERIES
YRMODY

古号足

IIATE	SERIES	LEG	SIGHT NUMBER	SUd POSIIION		beauf. detectefi		PERF. IIST. (KM)	Latitude		LONGTTUIE		FROFORTION MEAN_SCHOQL_SIZEEST		
YRHODIY				HORZ.	VERT.	Number	BY		DEG	MIN	DEG	MIN	(\% OF SCHOOL)	BEST	LOW
820627	02	01	01			3	03	1.5	06	34 N	135	18 W	1.3	80.0	64.0
820628	02	01	01			3	01	6.1	10	06 N	137	44 W	40.0	75.0	50.0
820630	04	04	03	02	02	5	05	6.8	10	51 H	142	03 W	100.0	0.0 \%	1.0
820701	03	21	01	11	02	5		0.0	11	24 N	144	30 W	50.0	15.0	7.0
820714	08	06	02			4	04	2.2	10	5.5 N	155	354	100.0	0.0%	5.0
820715	04	10	01	08	02	3	05	0.3	09	45 N	153	44 W	50.0	5.0	5.0
820717	04	03	04	11	01	2	02	1.3	10	24 N	148	04 W	100.0	4.0	4.0
820717	07	08	08	06	03	3	03	3.8	07	58 N	147	09 W	66.7	7.0	5.0
820718	03	01	03	06	02	3	05	2.2	08	15 N	143	56 W	13.3	43.0	103.0
820715	04	01	04	06	02	3	04	0.3	08	14 N	143	55 W	50.0	7.0	$\%$
820718	04	02	05	06	02	3	03	3.2	08	15 N	143	54 W	100.0	10.0	8.0
820719	01	03	01	01	02	2	02	1.6	07	07 N	141	53 W	12.5	80.0	64.0
820719	04	01	05	12	12	3	04	2.6	07	43 N	141	09 W	2.5	75.0	63.0
820719	05	10	06	08	02	3	06	4.8	08	10 N	140	39 W	100.0	20.0	10.0
820720	01	07	01	01	02	3	05	4.0	07	50 N	138	23 W	37.5	25.0	45.0
820720	02	11	03			2	05	1.7	10	US N	137	St W	50.0	18.0	10.0
820721	03	03	05	10	12	3	04	0.2	11	40 N	134	47 W	3.0	67.0	54.0
820722	05	01	03	10	02	1	02	1.9	09	14 N	132	17 W	10.0	25.0	17.0
820722	08	01	06	12	12	1	06	6.2	09	03 N	132	07 W	100.0	15.0	3.0
820723	03	09	01	08	01	3	04	0.3	08	04 N	128	54 W	100.0	0.06	3.0
820723	06	02	04			3	01	2.4	08	30 N	128	20 W	100.0	0.0%	15.0
820724			09	12	12	1	01	1.1	10	28 N	126	33 W	100.0	0.0%	20.0
820724	01	07	04	02	02	1	01	10.4	10	16 N	126	44 W	100.0	0.0\%	5.0
820724	04	04	11	12	12	1	04	0.0	10	48 H	126	15 W	100.0	0.0*	1.0
820724	04	04	13	12	12	1	05	8.7	10	49 N	126	15 W	100.0	1.0	1.0
820724	06	01	15	08	01	\dagger	04	3.1	10	53 N	126	11 W	60.0	12.0	9.0
820725	01	07	01	10	02	2	06	6.8	10	43 N	123	52 W	100.0	100.0	50.0
820725	02	04	03	10	01	3	04	1.6	10	27 H	123	43 W	100.0	0.0\%	2.0
820725	03	09	05	05	02	3	04	2.3	07	30 N	122	57 W	100.0	0.0%	5.0
820727	02	04	01			5	01	0.2	08	58 N	118	24 W	35.3	31.0	23.0
820727	03	02	02			6	05	4.1	07	02 N	118	18 W	100.0	$0.0: 1$	2.0

$B E S T$

2.0
$0.0 *$
3.0
$0.0 *$
8.0
20.0
$0.0 *$
$0.0 *$
12.0
$0.0 ;$
80.0
5.0
12.0
$0.0 *$100.0
100.0
50.0
50.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
15.0
27.3
100.0

$$
3=333333=3337
$$

$$
z z z z z z z z z=z z=z
$$

+Movin+mmanown--

$$
\underset{O}{O} \because
$$

$$
8
$$

$$
\simeq \subseteq
$$

date
SERIES

SIGHTINGS EY SPECTES
species: undoentified small whale

以

SIGHINGS BY BFECIES
SFECDES: UNDEEMTFIED SMALL WHALE

date	SERIES	LEG	Sight	SUN POSIIION	BEAUF.	Ietected	FERF.	Lallitude	LONGITude	Frofurtion	159H-S	SIZE ESI
YRmoly			NUMEER	HORZ. VERT.	NUMEER	Bi	HIST. (kit)	DEG Mid	deg min	(\% OF SCHOOL)) EEST	LOW
820802			13		,	04	3.9	3024 N	11610 W	3.0	12.0	21.0
820802	01	04	01		2	02	0.4	2923 N	11618	100.0	1.0	1.0
820802	03	02	02		1	03	0.5	2935 N	11605 W	33.3	2.0	2.0

SIOHINGS BY SFECIES
spectes: unidentified large hatale

SIGHTINGS BY SFECIES

SPECIES CODE: 9

$\begin{array}{ll}\text { BEST LOW } \\ 43.0 & 22.0\end{array}$

FROFORTIUN MEAN_SCDUOL SIZE ESI
(\% OF SCHOOL) longitune DEG MIN ヨanlity IEG MIN SIGHT SUN FOSIIIDA BEAUF. DETECTED BY穴 number horz. vert.

 UATE YRMOLY

ESTIMATEG-HEAN-SCHOOL-SIZE
LOW/(N) HTGH/(N) BEST/(N)

$$
\begin{aligned}
& \begin{array}{llll}
72.23(56) & 143.29(55) & 98.78(55) \\
12.92(15) & 24.23(15) & 17.00(15) \\
204.67(15) & 362.78(14) & 262.09(14) \\
25.55(1) & 47.26(1) & 31.40(1) \\
43.02(24) & 74.49(24) & 54.40(24) \\
65.31(22) & 106.33(22) & 80.13(22) \\
36.04(25) & 75.35(24) & 52.32(24) \\
6.27(17) & 10.25(17) & 7.13(17) \\
9.51(21) & 15.60(21) & 11.44(21) \\
2.48(15) & 4.41(15) & 2.87(15) \\
11.38(2) & 13.92(2) & 10.36(2) \\
8.24(107) & 28.30(82) & 13.01(83) \\
65.28(24) & 115.78(24) & 82.19(24)
\end{array}
\end{aligned}
$$

TOTALS

SPECIES CODE	SPECIES SIGHTLNGS			ESTIMATED-MEAH-SCHDOL-SIZE					
	TOTAL	PURE	MIXED	LOW /	(N)	HIGH /	(N)	BEST /	(N)
32	2	1	1	18.73	2)	27.616	2)	21.200	$2)$
33	3	2	1	0.518	3)	8.011	3)	5.076	3)
34	21	11	10	7.861		11.351		8.991	20)
37	3	3	0	3.331	3)	5.001	3)	3.671	3)
46	3	2	1	2.331	3)	3.171	3)	2.331	3)
47	1	1	0	1.006	1)	1.000	1)	1.008	1)
48	10	8	2	1.961		2.181	10)	1.991	10)
49	14	10	4	1.431		1.701	14)	1.431	14)
51	9	6	3	1.961	9)	2.441	9)	2.021	9)
61	9	5	4	1.856	9)	2.136	9)	1.917	9)
70	9	6	3	0.881	9)	0.936	8)	0.868	8)
71	1	0	1	0.571	1)	0.381	1)	0.321	1)
72	3	1	2	1.096	3)	1.422	3)	1.091	3)
74	1	0	1	1.486	1)	2.126	1)	1.704	1)
75	2	0	2	2.686	2)	3.866	2)	2.991	2)
76	2	0	2	1.401	2)	1.276	2)	0.911	2)
78	34	25	9	1.551	34)	1.941	33)	1.481	33)
79	10	7	3	0.888	10)	1.036	10)	0.881	10)

SPECIES NAME
(SCIENTIFIC NAME)

SIGHTING SUMMARY

o - m
~ ○ M 옹
$\therefore \therefore \therefore \frac{\pi}{n}$
か か
totals
grand totals

SPECIES NAME
(SCIENTIFIC NAME)
UNIDENTIFIED CETACEAN
UNIDENTIFIED OBJECT
UNIDENTIFIED WHALE

SIGHTING SUMMARY

	Dhte	$\begin{aligned} & \text { SIGHT } \\ & \text { no. } \end{aligned}$	$\begin{aligned} & \text { BEST } \\ & \hline \text { EST. } \end{aligned}$	FCT	$\begin{aligned} & \text { OES } \\ & \text { ESTI. } \end{aligned}$	$-\frac{2 C T}{F C T}$	$\begin{aligned} & \text { OEST } \\ & \text { EST. } \end{aligned}$		$\begin{aligned} & \text { COES } \\ & \text { EST. } \end{aligned}$				$\begin{aligned} & \text { QESS } \\ & \text { EST. } \end{aligned}$	FCT
species	2													
	820716	04	70	2					75	5				
	820717	03	95	65			75	20	175	${ }^{5} 5$	160	100	250	20
	820717	05							100	25				
	820718	01	350	20					600	12				
	820718	02					175	50	200	20				
	820718	06											60	30
	820719	01			60	10			60	34				
	820719	05	. 65	90					85	95				
	820720	01					100	50						
	820721	05	70	70					65	62	65	62		
	820722	03							30	100				
	820724	08	550	96					500	80	450	88		
	820724	17	110	80	110	40	300	30	175	70	200	60	125	40
	820724	22			30	100	100	100					25	100
	820725	02	375	20	280	30	600	70					250	70
	820727	01	22	100			20	100						
	320728	02	3	100										
	820730	04	35	100					30	100	40	100		
species	3													
	820601	07	450	50										
	820603	01	21	95										
	820603	05	600	40										
	820609	01	350	1										
	820610	03					25	2						
	820612	09					225						500	4
	820614	04	600	5							500	15		
	820615	02	230	3										
	820619 820630	06					300	30					450	15
	${ }_{820718}$	01		25							800	10		
	820724	08	550	4										

	WATE	sight NO.	$\begin{aligned} & -\mathrm{OES} \\ & \mathrm{EEST} \\ & \text { EST. } \end{aligned}$	FCT	$\begin{aligned} & \text { EEST } \\ & \text { EST. } \end{aligned}$	FCT	$\begin{aligned} & \text { EEST } \\ & \text { EST. } \end{aligned}$	FCT	$\begin{aligned} & \text { EEST } \\ & \text { EST. } \end{aligned}$	$-\frac{4}{\mathrm{~F}} \mathrm{CT}$	$\begin{aligned} & \text { WEST } \\ & \text { EST. } \end{aligned}$	FT	$\begin{aligned} & -Q E S \\ & E E S T \\ & E S T \end{aligned}$	FCT
SFECIES	5													
	820514	02	3	100					15	100	12	100		
	820515	04	250	100	700	100	500	100	300	100	250	100	200	100
	820515	05	25	100			100	100						
	820522	18	300	100	400	100	500	100	150	100	275	100	350	100
	820526	03	100	100			200	100	150	100	200	100		
	820527	00	750	100	400	100	700	100	300	100			950	100
	820620	02			35	100	35	100					20	100
	820802	04	1800	100			1200	100			1200	100		
SPECIES	6													
	820522	17									150	100		
SFECIES														
	820521	05	150	75					100	70	300	100		
	820530	01	600	40			200	60			130	75		
	820530	02	700	30			175	30	300	30	22%	35	600	10
	820601	07			400	20	400	25					900	35
	820603	01			25	85	35	48	18	94			40	75
	820603	05			500	30	700	40	500	55			900	35
	820609	01							500	1				
	820610	03			45	100	25	98	35	100			20	100
	820612	02			80	50	150	50					40	40
	820612	04	350	25					700	25			400	25
	820612	09			500	10			450	15			500	1
	820614	04			400	20	750	20	800	7			500	10
	820615	01	270	5	100	20			150	7			80	30
	820615	02							350	5				
	820615	03			50	50								
	820610	01	35	100					20	100				
	320616	02			100	80	300	80					100	90
	820617	04							100	10				
	820619	06			300	50							450	15
	820622	09											350	3
	820724	06									450	12		

	date	$\begin{aligned} & \text { SIGHT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { EBES } \\ & \text { EST. } \end{aligned}$		$\begin{aligned} & -O E \\ & \hdashline B E S T \\ & \text { EST. } \end{aligned}$		$\begin{aligned} & -0 B S \\ & \text { BEST } \\ & \text { EST. } \end{aligned}$	FCT	$\begin{aligned} & \text { BEST } \\ & \text { EST. } \end{aligned}$		$\begin{aligned} & \text { EDS } \\ & \text { EST. } \end{aligned}$	$\frac{5}{50}$	$\begin{aligned} & \text { OBS } \\ & \text { ESET } \\ & \text { EST. } \end{aligned}$	
Species 10														
	820724	17									200	20		
SPECIES 11														
	820622	09	450	70	200	50	250	30	150	35			350	32
	820627	01			80	20							40	60
	820629	01	55	45					45	65	100	30		
	820630	01	65	97					75	92				
	820630	04							200	90				
	820701	01											25	100
	820714	01	50	100					175	95	140	20		
	820714	03	2	100										
	820715	01	5	100										
	820716	04	70	98			40	100	75	95	130	100	50	100
	820717	03	95	35			75	80	175	35			250	80
	820717	05	90	100					100	75				
	820718	01	350	80					800	88	800	90		
	820718	02	230	95			175	50	200	80				
	820718	03									130	90		
	820718	06			25	100							60	70
	820719	01			60	90	200	50	60	66			65	100
	820719	05	65	10										
	820724	03							500	20				
	820724	17	110	20	110	60	300	70	175	30	200	20	125	60
	820725	02	375	80	280	70	600	30					250	30
GPECIES 13														
	820518	01	8	100					10	100	12	100		
	820518	08			15	100			8	100			12	100
	820518	11							8	100	12	100		
	820521	03	20	100					10	100				
	820522	11							85	100	250	100		
	820522	16			75	100	250	100					150	100
	820522	22							6	100				
	820523	06	100	100	90	100	400	100	40	100			500	100

	date	$\begin{aligned} & \text { SIGHT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & -O B S \\ & \text { EST. } \end{aligned}$	- FCT	$\begin{aligned} & \text { OES } \\ & \text { ESTI. } \\ & \text { EST } \end{aligned}$	FCT		FCT	$\begin{aligned} & -D B \\ & B E S T \\ & \text { EST. } \end{aligned}$	FCT	$\begin{aligned} & =\mathrm{DES} \\ & \mathrm{BEST} \\ & \text { EST. } \end{aligned}$	$\frac{5}{\mathrm{FCT}}$	$\begin{aligned} & \text { EDB } \\ & \text { EST. } \end{aligned}$	$-\frac{6}{P C T}$
SPECIES 77														
	820724	15							12	60				
	820725	01											100	100
	820727	01			50	100								
	820727	03	2	100										
	820728	02							3	100				
	820729	03											20	100
	820730	06											80	100
	820801	02											9	45
SPECIES 90														
	820517	06	375	100	700	100			175	100	175	100		
	820522	17	175	100	200	100								
	820528	01	18	100					15	100				
	820601	02	50	100					50	100				
	820601	03	20	1										
	820601	05	65	99										
	820601	07	450	50										
	820601	08	18	100					15	100				
	820603	01	21	5					18	6				
	820603	04							206	97				
	820603	05	600	60					500	45				
	820612	02			80	50								
	820612	09			500	90	225	98	450	85				
	820614	04	600	95					800	43	500	85		
	820615	01							150	93				
	820615	03	200	100					100	100				
	820718	02	230	5										

Figure 1. Tracklines surveyed from the R/V D. S. Jordan in the eastern tropical Pacific during May 14 through August 2, 1982.

FOG/RAIN CODES
NO FOG OR RAIN =
FOG $=$
RAIN $=$
FOG AND RAIN $=4$

ENOING CODES
1 = COURSE CHANGE
$2=$ SPEED CHANGE
$4=$ EFFORT TERMINATED
$5=$ LEG ENOS TO RECORD
POSITION IN FOLLOWING LEG
$8=$ LEG ENOS DUE $T O$ CHANGE IN ENVIRONMENTAL CONDITIONS

Figure 2. Research ship marine mammal daily effort record.

RESEARCH SHIP
MARINE MAMMAL SIGHTING RECORD

OBSERVER 1

OBS.	SC			$\underset{\neq}{\text { CARD }}$	SPECIES 1 \%		$\begin{gathered} \text { SPEC } \\ \substack{\text { SPECIES } \\ \vdots} \\ \hline \end{gathered}$	CIES PROPORTIONS $1^{\text {SP } 2} \quad$ SPECIES 3				
COOE	BEST	High	Low					${ }_{\text {CODE }}^{\text {SP }}$		$\left.\right\|_{\text {CODE }} ^{\text {SP } 3}$		
	1	1	1	${ }^{0} 2$								
	+	69	3 ${ }^{1616}$		18	${ }^{21}{ }^{p} 1^{3}$			28	31	33	36
S ${ }^{\text {P }}$												

OBSERVER 2

OBSERVER 3

OBSERVER 4

OBSERVER 5

$\begin{aligned} & \text { OBS } \\ & \text { CODE } \end{aligned}$	SCHOOL SIZE ESTIMATE			SPECIES PROPORTIONS								
				$\begin{gathered} \text { SPECIES } 1 \\ \% \end{gathered}$	$\begin{aligned} & \text { SP } 1 \\ & \text { CODE } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SPEC\|ES } 2 \\ \% \end{gathered}\right.$	$\begin{aligned} & \text { SP } 2 \\ & \text { CODE } \end{aligned}$	SPECIES 3 SP 3		SPECIES 4 SP 4		
	BEST	HIGH	LOW							\%	CODE	
1	11	$\underline{1}$	L	1	1	1	1	1	1		1	
20				34	37	39	42	44	47		52	
$\mathrm{S}_{1}{ }^{\mathrm{P}}$						$1^{P} \\|^{3}$			$S_{1}{ }^{\text {P }}$			

OBSERVER 6

Figure 3. Research ship marine mammal sighting record.

SIGHTING SUMMARY
LIST ALL OIAGNOSTIC FEATURES OBSERVED (INCLUDING ESTIMATED BODY LENGTH)

BEHAVIOR - (DESCRIBE AGGREGATION, MOVEMENT, BOW AND STERN RIDING, BLOWS, ETC.)

ASSOCIATED ANIMALS - (INCLUDE NUMBER AND SPECIES OF BIRDS)

		Photos:	ROLL \#
			FRAME(S): \#
total time of OBSERVATION	ENVIR. COND. (RAIN, OVERCAST, FOG, CHOPPY)	Closest distance of OBSERVATION	
AMT. OF TIME AT CLOSEST DISTANCE	TAGS ASSOCIATED WITH SIGHTING	METHOD OF OBSERVATION (EYE, 7x, 10x, 25x)	

Figure 4. Research ship marine mammal sighting record continuation sheet.

117

HORIZONTAL SUN POSITION

Figure 5. Vertical and horizontal sun position categories.

Figure 6. Record of offshore spotted dolphin, Stenella attenuata (Species Code 2) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 7. Record of spinner dolphin, Stenella longirostris (Species Code 3) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 8. Record of common dolphin, Delphinus delphis (Species Code 5) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 9. Record of coastal spotted dolphin Stenella attenuata graffmani (Species Code 6) encountered in the eastern tropical Pacific during May 14 through August 2, 1982

Figure 10. Record of eastern spinner dolphin, Stenella longirostris (Species Code 10) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 11. Record of whitebelly spinner dolphin, Stenella longirostris (Species Code 11) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 12. Record of striped dolphin, Stenella coeruleoalba (Species Code 13) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 13. Record of rough toothed dolphin, Steno bredanensis (Species Code 15) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 14. Record of bottlenosed dolphin, Tursiops truncatus (Species Code 18) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 15. Record of Risso's dolphin, Grampus griseus (Species Code 21) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 16. Record of Pacific white-sided dolphin, Lagenorhynchus obliquidens (Species Code 22) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 17. Record of pygmy killer whale, Feresa attenuata (Species Code 32) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 18. Record of false killer whale, Pseudorca crassidens (Species Code 33) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 19. Record of pilot whale, Globicephala sp. (Species Code 34) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 20. Record of killer whale, Orcinus orca (Species Code 37) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 21. Record of sperm whale, Physeter catodon (Species Code 46) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 22. Record of pygmy sperm whale, Kogia breviceps (Species Code 47) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 23. Record of dwarf sperm whale, Kogia simus (Species Code 48) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 24. Record of beaked whale, Zipdiid (Species Code 49) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 25. Record of unid. mesoplodont, Mesoplodont sp. (Species Code 51) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 26. Record of Cuvier's beaked whale, Ziphius cavirostris (Species Code 61) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 27. Record of Rorceval, Balaenoptera sp. (Species Code 70) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 28. Record of Minke whale, Balaenoptera acutorostrata (Species Code 71) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 29. Record of Bryde's whale, Balaenoptera edeni (Species Code 72) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 30. Record of fin whale, Balaenoptera physalus (Species Code 74) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 31. Record of blue whale, Balaenoptera musculus (Species Code 75) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 32. Record of humpback whale, Megaptera novaeangliae (Species Code 76) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 33. Record of unidentified dolphin (Species Code 77) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 34. Record of unidentified small whale (Species Code 78) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 35. Record of unidentified large whale (Species Code 79) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 36. Record of spotted dolphin, Stenella attenuata, (Species Code 90) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 37. Record of unidentified cetacean (Species Code 96) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 38. Record of unidentified object (Species Code 97) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

Figure 39. Record of unidentified whale (Species Code 98) encountered in the eastern tropical Pacific during May 14 through August 2, 1982.

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost $\$ 3.50$. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Center are listed below:

NOAA TM NMFS SWFC 19 The relationship between changes in gross reproductive rate and the current rate of increase for some simple age structured models. T. POLACHECK (May 1982)

20 Testing methods of estimating range and bearing to cetaceans aboard the R/V D. S. Jordan.
T. D SMITH
(1982)

21 "An annotated bibliography of the ecology of co-occurring tunas (Katsuwonus pelamis. Thunnus albacares) and dolphins (Stenella attenuata, Stenella longirostris and Delphinus delphis in the eastern tropical Pacific"
S. D. HAWES
(November 1982)
22 Structured flotsam as fish aggregating devices. R. S. SHOMURA and W. M. MATSUMOTO (November 1982)

23 Abundance estimation of dolphin stocks involved in the eastern tropical Pacific yellowfin tuna fishery determined from aerial and ship surveys to 1979.
R. S. HOL.T and J. E. POWERS
(November 1982)
24 Revised update and retrieval system for the CaICOFI oceanographic data file.
L. EBER and N. WILEY
(December 1982)
25 A preliminary study of dolphin release procedures using model purse seines.
D. B. HOLTS and J. M. COE
(December 1982)
26 "Possible effects of sampling biases on reproduction rate estimates for porpoise in the eastern tropical Pacific."
TOM POLACHECK
(January 1983)
27 "Report of porpoise experiment testing detection of on-track schools (pet dots), March 7-April 5, 1981"
RENNIE S. HOLT
(February 1983)
28 "Two computer programs to project populations with time-varying vital rates
TIM GERRODETTE, DANIEL GOODMAN and JAY BARLOW (February 1983)

[^0]: U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Center

[^1]: ${ }^{1}$ Richey, C. R. 1976. Memorandum of opinion. CA NO. 74-1465 and CA NO. 75-0227. U.S. District Court, District of Columbia, May 11, 1976.
 ${ }^{2}$ Smith, T. D. 1975. Estimates of sizes of two populations of porpoise (Stenella) in the Eastern Tropical Pacific Ocean. Southwest Fisheries Center Admin. Rep. No. LJ-75-67, 88 pp .

[^2]: ${ }^{3}$ Thomas, J. A., S. R. Fisher, and L. M. Ferm. 1982. Preliminary results on marine mammal detection using a towed acoustic array in the eastern tropical Pacific. Hubbs Sea World Research Institute Tech. Rep. No. 82-144, 13 pp .

[^3]: "Ralston, F. MS. Usage procedures and coding notes for "Research Vessel" sighting and effort records. Southwest Fisheries Center, La Jolla, CA.

[^4]: ${ }^{5}$ Thomas, J. A., S. R. Fisher, L. M. Ferm, and R. S. Holt. 1983. Acoustic detection of cetaceans using a towed array of hydrophones. Hubbs Sea World Research Institute, San Diego, CA. MS.

